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Abstract

We discuss kernel fuzzy classifiers with hypersphere re-
gions, which are defined in the feature space mapped from
the input space. Sarting from a hypersphere with a small
radius defined at a datum, we expand the hypersphereif the
new datumiswithin the prescribed distance fromthe center.
And if not, we define a new hypersphere. After rule gener-
ation, we resolve overlaps of different classes contracting
the hyperspheres. We then define a truncated conical mem-
bership function for each hypersphere. e demonstrate the
usefulness of the kernel version of fuzzy classifiers with hy-
persphere regions with several benchmark data sets.

1 Introduction

In support vector machines (SVMs) [1], the input space
is mapped into a high dimensional feature space, and in
the space, the optimal hyperplane is determined so that two
classes are separated with the maximum margin. Accord-
ing to performance comparisons in a wide range of appli-
cations, support vector machines have shown to have high
generalization ability.

Inspired by the success of support vector machines,
to improve generalization ability and classification ability,
conventional pattern classification techniques are extended
to incorporate maximizing margins and mapping to a fea
ture space. For example, online perceptron algorithms, neu-
ra networks, and fuzzy systems have incorporated maxi-
mizing margins [2].

There are numerous conventional techniques that are ex-
tended to be used in the high-dimensiona feature space,
e.g., kernel perceptrons, the k-means clustering algorithm,
the kernel self organizing feature map, kernel discriminant
analysis, kernel principal component analysis, kernel Ma-
halanobis distance, and kernel least-squares [2].

One of the problems of support vector machines is that
it is difficult to analyze the behavior of support vector ma-

chines becausetheinput space is mapped to the high-dimen-
sional feature space. There are severa approaches to visu-
alize support vector machines [3, 4, 5]. Another approach
is to extend fuzzy classifiers to kernel fuzzy classifiers that
are defined in the feature space [6]. Although fuzzy classi-
fiers with hyperbox regions such as discussed in [7, 8] are
difficult to extend to the feature space, classifiers with hy-
perspheres|[9, 10, 11] arerelatively easily extended.

In this paper, we define fuzzy rules in the feature space
in the way similar to fuzzy min-max classifiers[7]. Instead
of generating and contracting hyperboxes, we generate and
contract hyperspheresin the feature space. To facilitate effi-
cient calculations in the feature space, we use kernel tricks.
Namely, we use kernel functions associated with amapping
function to avoid explicit treatment of variables in the fea-
ture space.

Suppose there are training data belonging to one of n
classes. We scan the training data and for a training da-
tum with no associated hyperspheres we define the hyper-
sphere at the training datum with a predefined small ra-
dius R.. If thereis a hypersphere that includes the train-
ing datum or whose center is within the prescribed max-
imum radius R..x, we modify the center and the radius
of the hypersphere. If not, we generate the hypersphere at
the training datum with radius R.. After generating the hy-
perspheres, we check whether the hyperspheres of different
classes overlap. If there is an overlap, we resolve the over-
lap contracting the hyperspheres.

In Section 2, we discuss the rule generation of kernel
fuzzy classifiers. In Section 3, we compare the generaliza-
tion performance of the method with that of other classifiers
using two-class and multiclass data sets.

2 Dynamic Rule Generation

2.1 Concept

In the first stage we scan the training data and generate
hyperspheres of each class without resolving overlaps be-



tween classes. Then in the second stage, we resolve over-
laps between classes, contracting hyperspheres.

We explain the idea of hypersphere generation using the
two-dimensional example shown in Fig. 1. In the figure,
assume that Data 1, 2, and 3 belonging to the same class
are scanned in this order. For Datum 1, we generate the
circle with Datum 1 being the center and with radius R..
Then for Datum 2, we check if the circle is expandable.
Assume that distance between Data 1 and 2 is shorter than
Ruax. Then we generate the dotted circle shown in Figure
1, whose center is at the middle of data 1 and 2 and whose
diameter is the distance between Data 1 and 2.

If Datum 3 isinside of the dotted circle, we update the
center and the radius. But because Datum 3 is outside of the
circle, we check if the distance between the center and the
datum is within R,.«. If S0, we update the center adding
Datum 3in addition to Datum 1 and 2 and cal cul ate the min-
imum radius that includes Data 1, 2, and 3. If thecircleis
not expandable, we generate the circle with Datum 3 being
the center and with radius R..
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Figure 1. Generation of circles

After generating hyperspheres for each class without
considering the overlap between classes, we resolve over-
laps by contracting hyperspheres. In Fig. 2, two circles
belonging to classes: and j are overlapped. We resolvethis
overlap, contracting the circles as shown in the figure.

For each hypersphere we define a membership function
for datum x, in which the degree of membershipis1if xis
in the sphere and the degree of membership decreases as x
moves away from the hypersphere. Fig. 3 shows an exam-
ple for atwo dimensional case. The shape of the member-
ship function is a truncated conical. Usually, the degree of
membership is defined between 0 and 1, but to avoid unclas-
sifiable regions, we assume negative degree of membership.
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Figure 2. Resolution of overlap

2.2 Rule Generation

In the following we discuss the procedure of rule gener-
ation in detail.

Let the training inputs for class i be x;; for j = 1,. ..,
M;, wherex;; isthe jthtraining datum for class: and M; is
the number of datafor classi. And let g(x) be the mapping
function that maps the input space into the feature space.

The procedure for generating hyperspheres for classi is
asfollows.

1. Generatethe hypersphere S;; withcenter c;; = g(x1)
and with radius R;; = R.. Set NZS =1, Xn = {1},
and j = 2, where N} is the number of generated hy-
perspheres for class ¢ and X;; is the set of indices of
datafor calculating the center c;; .

2. Checkif x;; isin asphere. Namely if there exists such
k(1 <k < Nj)that satisfies

llg(xi;) — cirll < Rik, @)

x;; isin hypersphere S;;, where

1
Cik = X—| Z g(Xz‘j’)~ )

| ik j'eXik

Here, | X;x| isthe number of elementsin X;;.. If there
are more than one hypersphere that satisfy (1), we se-
lect one whose value on the left-hand side of (1) isthe
smallest. Update the center given by (2) adding x;;,
update R;x, and go to Step 4. Otherwise, find hyper-
sphere S;;, whose center is nearest to x;;:

k= argn}lﬁi/n lg(xij) — cir |- ©)
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Figure 3. Definition of a membership function

3. Checkif the hypersphere S;;. can be expandablefor the
inclusion of x;;. If

”g(xij’) - cik?” < Rnax  forj e X 4

is satisfied, hypersphere S;;; is expandable.
Then, we set

Xip «— XipU{x}, 5)

Otherwise, we set

N} « Ni+1, 7)
Xine = {j}, (8)

and generate the hypersphere S; ns with center c; n:
= g(x;;) and with radius R; n= = R..

4. If j = M;, terminate the algorithm. Otherwise, j «—
j+ land goto Step 2.

2.3 Overlap Resolution

We can resolve overlaps by contracting hyperspheres or
tuning membership functions, which are defined in the next
section. But since we are going to define truncated conical
membership functions shown in Fig. 3, we need to resolve
overlaps between hyperspheres.

The ratio of contraction directly influences the gener-
dization ability. But here, we resolve overlaps of hyper-
spheres S;; and Sy, (i # k) in the following way:

1 For R;; < Hcij — Croll < Ri; + Rio and Ry, <
llcij — Croll < Rij + Rio
AsshowninFig. 2, two hyperspheres overlap but each
center is outside of the other hypersphere. We resolve
the overlap contracting the hyperspheres by

Rij + Riko — llcij — cioll

Ar = 5 , 9
Rij — Rij — A?“, (10)
Ry, «— Rpo— Ar. (11)

2. For Rq;j < ||Cij — Cko” < Rio

One of the hypersphere centers is inside of the other
hypersphere but the other is not. We resolve the over-
lap contracting the hyperspheres by

Ri
||Cij - cko“ - 2j ) (12)

Rq;j

Rko —

(13)

Rq;j —

3. For ||Cij — C]m” < Rq‘,j < Rio

Both centers of the hyperspheres areinside of the other
hyperspheres. We resolve the overlap contracting the
hyperspheres by

lleij — ckoll

2 b
lleij — coll
e,

R;j (19

Rko (15)

Contraction of hyperspheres may result in misclassifica-
tion of the correctly classified training data, and thus may
worsen the generalization ability. Thisis avoided by tuning
membership functions. But here, we do not consider tuning.
Instead, we optimize the value of R,,.x by crossvalidation.

2.4 Déefinition of Membership Functions

We define the membership function of S,; for x, m;;(x),
by

e (X) - 1 for dij(X) < Rija
K B 1-— d” (X) =+ R” for dij(X) > Rq;j,
(16)
where d;;(x) is the distance between g(x) and c;; and is
given by
dij(x) = [lci; — g(x)- (17)

The membership function given by (16) takes negative
value so that any data are classified into a definite class un-
lessthey are on the class boundaries. Since the slopes of the
membership functions are the samefor al the hyperspheres,
the class boundary on the line segment between c;; and ¢y,



isthe middle point of the line segment between the two hy-
perspheres S;; and Si,. Thisisasimilar ideaof the optimal
separating hyperplane of a support vector machine. But if
there are misclassified data belonging to classi or j, we can
tune the slopes of membership functions [12]. But here we
do not consider this.

2.5 Kernel Methods

In kernel methods, we treat the variables in the feature
space implicitly using kernels. In our proposed method,
we need to calculate ||c;; — cioll and ||g(x) — ¢4 using
H(x,x') = g"(x) g(x). Namely,

(Cij — Cko)" (Cij — Cio)
1 /
= —|Xij|2 Z H(x,x")

lcij — crol|* =

x,x'€X;j

2
| X | | X kol 2

x€Xij,x' €Xpo

H(x,x')
+ﬁ > Hxx), (18

le®) eyl = Heox) - —— 3 H(xx)

In our study, we use the following kernels:
1. linear kernels: H(x,x’) = x'x/,
2. polynomial kernels:
H(x,x') = (x!x +1)4,
where d is a positive integer,
3. RBF kernels:
H(x,x) = exp(—7lx — x|[?), (20)
where ~ is a positive parameter.

4. Mahalanobis kernels:
H(x,x') = exp (—é(x —-x)T'Q 1 (x - x')) ,
m

where ¢ is a positive parameter and @ is the diago-
nal covariance matrix calculated using the training data
[13].

Because, except for linear kernels,

Z g(x;) # g<Z X;) (21)

holds, we need to cal cul ate the second term in the right hand
side of (19) for x but the result of the third term may be
saved to reduce computation time. Likewise, by saving the
result of (18), computation time is reduced.

3 Performance Evaluation

We compared the generalization ability of the kernel
fuzzy classifier and other methods using two groups of data
sets: (1) some of the two-class data sets used in [14, 15]*
and (2) multiclass data setsused in [2, 12]. We used the lin-
ear and Mahalanobis kernels for the kernel fuzzy classifier.

Throughout the experiments we set R. = 0.01 and se-
lected the value of R,,.x from 0.05 to 1.5 by the increment
of 0.05 by 10-fold cross validation. In addition to this we
set alarge value to Ry, to avoid clustering the class data.
For Mahalanobis kernels we need to determine R, and
0. Like Mahalanobis kernels for support vector machines
[13], we determine the values of R,,.x and § by line search.
Namely, first we determinethe value of Ry, withd = 1 by
cross validation. Then with the determined value of Ry,
we determine the value of § by cross validation changing §
from 0.1 to 2 with the increment of 0.1.

3.1 Evaluation for Two-class Problems

Table 1 lists the specifications of two-class problems.
Each problem has 100 or 20 training data sets and their cor-
responding test data sets. We determined the optimal values
of Ruax by 10-fold cross validation. For comparison, we
used the support vector machine (SVM) with Mahalanobis
kernels and the kernel fuzzy classifier with ellipsoidal re-
gions [6]. For the support vector machine, we determined
the optimum value of the margin parameter C and § by line
search. For the kernel fuzzy classifier with elipsoidal re-
gions (KFC-ER), we used RBF kernels and determined the
parameters by 5-fold cross validation.

We performed cross validation of the first five training
data sets, and selected the median of the best values. Then,
for the optimal values, we trained the classifier for 100 or
20 training data sets and calcul ated the average recognition
error and the standard deviation for the test data sets.

Table 2 lists the parameter values for the kernel fuzzy
classifiers determined by cross validation. The symbol oo
denotes that the highest recognition rate for the validation
data set was obtained when the class data were not clus-
tered. Except for the banana and image data sets relatively
large values were selected for Ry,ax.

Table 3 lists the average classification errors and the
standard deviations with the &+ symbol. The “KFC-L" and

Ihttp://idafirst.fraunhofer.de/projects/bench/benchmarks.htm



Table 3. Average error rates and standard deviations of the test data sets.

Data KFC-L KFC KFC-ER SVM
Banana 126+0.9 124+0.8 10940.6 10.44+0.5
B.Cancer 31.6+5.3 31.0+4.6 265444 256+4.4
Diabetes 33.2+59 287+25 253+2.0 23.7+£1.7
German  265+2.4 274422 252424 239+2.1
Heart 187+3.5 16.2+3.3 156+3.6 15.7+3.2
Image 28+0.7 37+05 29+0.7  3.0+0.5

Ringnorm  24.4+0.6

1.4+0.1 32403 1.7£0.1

Table 1. Benchmark data sets for two-class

problems.

Data Inputs Train. Test Sets
Banana 2 400 4900 100
B.cancer 9 200 77 100
Diabetes 8 468 300 100
German 20 700 300 100
Heart 13 170 100 100
Image 18 1300 1010 20

Ringnorm 20 400 7000 100

Table 2. Parameter values selected by cross

validation.
Data Linear Mahalanobis
Rimax  Rmax 0
Banana 0.1 035 0.7
B. Cancer 0.8 0.9 1.0
Diabetes 065 0.6 05
German 0.8 05 05
Heart 00 00 0.1
Image 005 01 14
Ringnorm oo 00 12

“KFC" columns list the values for the kernel fuzzy classi-
fier with linear kernels and that with Mahalanobis kernels,
respectively.

The best performance in the row is shown in boldface.
For the german and image data sets, the KFC-L performed
better than the KFC, but for the other four data sets, the
KFC performed better.

The KFC-L showed the best performance for the image
data set, but for the ringnorm data set, the KFC-L showed
a large error compared to other methods. Table 4 shows
the best recognition rates of the ringnorm validation data
sets. The recognition rates of the KFC-L are very low com-
pared to those of the KFC. Because smaller Ry, results
in overfitting, the large value of Ry, Was selected as opti-
mal. And the large value caused large contraction of hyper-
spheres. Thus, in such a situation we need to optimize the
membership functions as discussed in [12]. Except for the
heart, image, and ringnorm data sets, KFC or KFC-L per-
formed poorly compared to KFC-ER and SVM. For these
data sets to improve the generalization ability we need to
optimize the membership functions.

3.2 Evaluation for Multiclass Problems

As multiclass data sets, we used the data setsin [2, 12].
They weretheirisdata[16, 17], the numeral datafor license
plate recognition [18], the thyroid data [19],2 the blood cell
data[20], and hiragana data[12, 21]. Table 5 lists the spec-
ifications of the data sets.

We used pairwise support vector machines. To resolve
unclassifiable regions, we used fuzzy support vector ma-
chines with minimum operators[2].

Table 6 shows the parameter values determined by cross
validation. Unlike two-class problems, a relatively small
value was set to Rpjax.

2ftp://ftp.ics.uci .edu/pub/machi ne-learning-databases/



Table 4. Cross validation results (%) for the

ringnorm data set.

Data KFC-L KFC

Ruax ReCc. Rupax 0 Rec.
1 00 75.75 oo 1.0 99.00
2 %) 76.75 oo 16 98.75
3 00 7400 oo 12 98.75
4 12 7750 oo 1.1 99.00
5 00 75.00 o~ 14 98.75

Table 5. Benchmark data sets for multi-class

problems.

Data Inputs Classes Train. Test
Iris 4 3 75 75
Numeral 12 10 810 820
Thyroid 21 3 3772 3428
Blood cell 13 12 3097 3100
Hiragana-50 50 39 4610 4610
Hiragana-105 105 38 8375 8356
Hiragana-13 13 38 8375 8356

Table 6. Parameter values selected by cross

validation.
Data Linear Mahalanobis
Rumax  Rmax 0
Iris 0.3 035 06
Numeral 005 065 09
Thyroid 0.1 025 06
Blood cell 0.1 005 02
Hiragana50 0.05 015 1.0
Hiragana13 0.05 0.05 0.3
Hiragana105 0.05 010 05

Table 7 lists the recognition rates of the test data sets
for 6 classifiers. The results of the fuzzy mini-max classi-
fier (FMM) and the k-nearest neighbor classifier (k-NN) are
from [12]. They showed the best performance for the test
data. For k-NN, the best k& was selected from 1, 3, 5, and
7. But for other classifiers, the parameters were determined
by cross validation. The SVM used Mahalanobis kernels
and the margin parameter and 6 were determined by cross
vaidation. For the KFC-ER, polynomia kernels were used
and the polynomial degree was determined by 5-fold cross
validation.

The performance difference between the KFC-L and
KFC is small. The reason may be that because the multi-
class data sets are relatively easily classified compared to
the two-class problems, the improvement of separability by
mapping to the feature space resulted in overfitting. For
the thyroid data, the KFC-L and KFC show poor recogni-
tion rates. Thisis the same tendency with that of the least-
squares support vector machines[2]. But for other data sets,
performance is comparable.

4 Conclusions

In this paper we discussed kernel fuzzy classifiers with
hypersphere regions. We scan the training data and if no
hyperspheres are defined for the class associated with a da-
tum we define the hypersphere at the training datum with a
predefined small radius. If there is a hypersphere that can
include the training data within the prescribed maximum
radius, we expand the hypersphere. If not, we generate the
hypersphere at the training data with the small radius. After
generating the hyperspheres, we resolve the overlap con-
tracting the hyperspheres.

For some two-class data sets the proposed classifiers
showed performance inferior to support vector machines
and kernel fuzzy classifiers with ellipsoidal regions, but for
multiclass problems, their performance was comparable to
other methods.

To further improve the generalization ability, we need to
tune the membership functions.
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