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Abstract

Classifying large datasets without any a-priori informa-
tion poses a problem especially in the field of bioinformat-
ics. In this work, we explore the problem of classifying hun-
dreds of thousands of cell assay images obtained by a high-
throughput screening camera. The goal is to label a few
selected examples by hand and to automatically label the
rest of the images afterwards. We deal with three major re-
quirements: first, the model should be easy to understand,
second it should offer the possibility to be adjusted by a do-
main expert, and third the interaction with the user should
be kept to a minimum. We propose a new active clustering
scheme, based on an initial Fuzzy c-means clustering and
Learning Vector Quantization. This scheme can initially
cluster large datasets unsupervised and then allows for ad-
justment of the classification by the user. Furthermore, we
introduce a framework for the classification of cell assay
images based on this technique. Early experiments show
promising results.

1. Introduction

The development of high-throughput imaging instru-
ments, e. g. fluorescence microscope cameras, resulted in
them becoming the major tool to study the effect of agents
on different cell types. These devices are able to produce
more than 50.000 images per day; up to now, cell images
are classified by a biological expert who writes a script to
analyze a cell assay. As the appearance of the cells in differ-
ent assays change, the scripts must be adapted individually.
Finding the relevant features to classify the cell types cor-
rectly can be difficult and time-consuming for the user.

The aim of our work is to design classifiers that are both
able to learn the differences between cell types and are easy
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to interpret. As we are dealing with non-computer experts,
we need models that can be grasped easily. We use the con-
cept of clustering to reduce the complexity of our image
dataset. Cluster analysis techniques have been widely used
in the area of image database categorization.

Especially in our case, we have many single cell images
with similar appearance that may nevertheless be catego-
rized in different classes. Another case might be that the
decision boundary between active and inactive is not re-
flected in the numerical data that is extracted from the cell
image. Furthermore, the distribution of the different cell
types in the whole image dataset is very likely to be biased.
Therefore, the results of an automatic classification based
on an unsupervised clustering may not be satisfactory, thus
we need to adapt the clustering so that it reflects the desired
classification of the user.

As we are dealing with a large amount of unlabeled data,
the user should label only a small subset to train the classi-
fier. Choosing randomly drawn examples from the dataset
would render the classifier biased toward the underlying dis-
tribution of different kinds of cells in the cell assay images.
Instead of picking redundant examples, it would be better
to pick those that can ”help” to train the classifier.

This is why we try to apply the concept of active learn-
ing to this task, where our learning algorithm has control
over which parts of the input domain it receives informa-
tion about from the user. This concept is very similar to
the human form of learning, whereby problem domains are
examined in an active manner.

To this date, research on approaches that combine clus-
tering and active learning is sparse. In [1], a clustering
of the dataset is obtained by first exploring the dataset
with a Farthest-First-Traversal and providing must-link and
cannot-link constraints. In the second Consolidate-phase,
the initial neighborhoods are stabilized by picking new ex-
amples randomly from the dataset and again by providing
constraints for a pair of data points.

In [7], an approach for active semi-supervised cluster-
ing for image database categorization is investigated. It in-



cludes a cost-factor for violating pairwise constraints in the
objective function of the Fuzzy c-means algorithm. The ac-
tive selection of constrains looks for samples at the border
of the least-well defined cluster in the current iteration.

Our approach is similar to the latter one, although we do
not update the cluster centers in each iteration but after an
initial fuzzy c-means clustering.

In Section 2, we briefly recapitulate the fuzzy c-means
algorithm, Section 3 describes our approach for the active
selection of constraints, and the moving of the cluster pro-
totypes. In Section 4, we introduce our prototype of a Cell
Assay Image Mining System with its subcomponents for
the image processing, before presenting first experimental
results in Section 5.

2. Fuzzy c-means

The fuzzy c-means (FCM) algorithm [2] is a well-known
unsupervised learning technique that can be used to reveal
the underlying structure of the data. Fuzzy clustering allows
each data point to belong to several clusters, with a degree
of membership to each one.

Let T = ~xi , i = 1, . . . ,m be a set of feature vectors
for the data items to be clustered, W = ~wk, k = 1, . . . , c
a set of c clusters. V is the matrix with coefficients where
vi,k denotes the membership of ~xi to cluster k. Given a
distance function d, the fuzzy c-means algorithm iteratively
minimizes the following objective function with respect to
v and w:

Jm =
|T |∑
i=1

c∑
k=1

vm
i,kd(~wk, ~xi)2 (1)

m ∈ (1,∞) is the fuzzification parameter and indicates
how much the clusters are allowed to overlap each other.
Jm is subject to minimization under the constraint

∀i :
c∑

k=1

vi,k = 1 (2)

FCM is often used when there is no a-priori information
available and thus can serve as an exploratory technique.
A common problem is that the cluster structure does not
necessarily correspond to the classes in the dataset. This
is why the FCM algorithm is used only as a preprocessing
technique. The fuzzy memberships vi,k prove useful for the
selection of datapoints at the border between clusters as we
will see in Section 3.1.

3. Active Learning

In order to improve the performance of the classifica-
tion based on the initial, unsupervised clustering, we aim

to guide the clustering process. Because we have no a-
priori information about the class distribution in the dataset,
we need to adapt the cluster prototypes so that they closer
model the boundaries between the classes. This is done in
two steps: 1. Labeling of a few ”interesting” examples and
2. moving the prototypes according to these labels. These
steps are discussed in detail in the following sections.

3.1. Selection of Constraints

We presume that we have access to a user (in our case the
biological expert) who can give us labels for different data
points. Another option would be that the user can define
a constraint between a given pair (xi, xj) of data points.
The assets and drawbacks of giving labels vs. constraints
are discussed in [3].

We assume that the most informative data points lie be-
tween clusters that are not well separated from each other,
so-called areas of possible confusion. This coincides with
the findings and results in [6] and [13]. The prior data dis-
tribution plays an important role, [4] proposes to minimize
the expected error of the learner:∫

x

ET

[
(ŷ(x;D)− y(x))2|x

]
P (x)dx (3)

where ET denotes the expectation over P (y|x) and ŷ(x;D)
the learner’s output on input x given training set D. If we
act on the assumption that the underlying structure found
by the FCM algorithm already inheres an approximate cate-
gorization, we can select better examples by querying data
points at the classification boundaries. That means we take
into account the prior data distribution P (x).

In order to have information about the general class label
of the cluster itself, we let the user label the cluster centers
using for each the nearest neighbor in the dataset, a tech-
nique known as ”Cluster Mean selection” [6]. If more than
one example per cluster shall be labeled, one can either split
the corresponding cluster into subclusters, or alternatively
select prototypes near to the one that was selected first.

To identify the data points that lie on the frontier be-
tween two clusters, we propose a new procedure that is eas-
ily applicable in the fuzzy setting. Rather than dynamically
choosing one example for the labeling procedure, we focus
on a selection technique that selects a whole batch of N
samples to be labeled. Note that a data item ~xi is consid-
ered as belonging to cluster k if vi,k is the highest among its
membership values. If we consider the data points between
two clusters, they must have an almost equal membership
to both of them. Given a threshold t ∈ [0, 1] the condition
can be expressed as follows:

|vi,k − vi,l| < t, vi,k, vi,l ≥
1
c

(4)



In order to find N samples to query, we start with a high
value for t and reduce it iteratively until we have obtained
a set of ≤ N samples. Figure 1 shows an example of three
clusters and the selected examples generated by this proce-
dure.

Figure 1. Three initial clusters and the se-
lected examples

Having obtained the labels for the cluster centers and for
a few confusing examples between them, we propose a new
method in the next section to adapt the actual clusters to
better match the underlying decision boundaries.

3.2. Learning Vector Quantization

The learning vector quantization algorithm [12] is a well-
known competitive learning method. The outline of the al-
gorithm is given in Algorithm 1. The LVQ algorithm needs
the class information for all training examples. Since we
can provide the class information only for a few selected
examples, we need to optimize the selection of them.

3.3. Adaptive Active Learning

Our approach to optimize the LVQ algorithm includes
the selective sampling scheme given in the previous sec-
tion. It is dependent on an initial clustering and constitutes
an extension to the LVQ-algorithm to choose the best ex-
amples. The total active clustering process is outlined in
Algorithm 2.

Our initial prototypes in step 1 are the ones obtained
from a fuzzy c-means clustering. Having the labels for each
cluster prototype, we can select the next candidates for the
query procedure along each border between two clusters.
Which datapoints are selected depends on the chosen num-
ber N of examples we want to query. If N is small (approx-
imately the number of clusters), some inter-cluster relation-
ships will not be queried because the corresponding clusters

Algorithm 1 LVQ algorithm
1: Choose R initial prototypes for each class m1(k),

m2(k), . . . ,mR(k), k = 1, 2, . . . ,K, e. g. by sampling
R training points at random from each class.

2: Sample a training point ~xi randomly (with replacement)
and let mj(k) denote the closest prototype to ~xi. Let gi

denote the class label of ~xi and gj the class label of the
prototype.

3: if gi = gj then {that is they belong to the same class}
4: move the prototype toward the training point:

mj(k) ← mj(k) + ε(~xi − mj(k)), where ε is the
learning rate.

5: end if
6: if gi 6= gj then {that is they belong to different classes}
7: move the prototype away from the training point:

mj(k)← mj(k) + ε(~xi −mj(k))
8: end if
9: Repeat step 2, decreasing the learning rate ε to zero with

each iteration.

Algorithm 2 Adaptive Active Clustering Procedure
1: Perform the fuzzy c-means algorithm (unsupervised).
2: Select N training examples with the most similar mem-

bership to several clusters.
3: Ask the user for the labels of these samples.
4: Move the prototypes according to the label of the pro-

totype and the samples.
5: Evaluation: If classification is better or matches the ex-

pected error then stop.
6: Repeat step 2, decreasing the learning rate ε to zero with

each iteration.

are clearly separated in the feature space. As our approach
focuses on separating classes given an initial ”meaningful”
clustering, this does not pose a problem. In each phase of
our adaptation of the LVQ algorithm, we move the cluster
centers according to a batch of N training points. For each
point from the sample set we determine the two clusters that
it lies in between and let the user label this point. We only
update the two cluster prototypes that are involved at this
point and leave the rest unchanged. We repeat the step of
selecting a batch of training examples, then move the clus-
ter centers for each point, decreasing the learning rate ε in
each iteration. The process of selected examples and their
influence on the prototypes can be seen clearly in Figure 2,
where we assume that the majority of examples selected
have the class label of cluster 2. The question is when to
stop the movement of the cluster centers. The simulated an-
nealing in the LVQ algorithm will stop the movement after
a certain number of iterations. However, an acceptable so-
lution may be found earlier, that is why a second stopping
criterion is introduced.
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Figure 2. Points selected and their influence
on the cluster prototypes

We make use of the already labeled examples to compare
the previous to the newly obtained results. After the labels
of the samples between cluster centers have been obtained,
the cluster prototypes are moved. The new classification of
the dataset is derived by assigning to each data point the
class of its closest cluster prototype. By comparing the la-
bels given by the user to the newly obtained labels from the
classification, we can calculate the ratio of the number of
correctly labeled samples to the number of falsely labeled
examples.

4. Application: Cell Assay Image Mining

Our Cell Assay Image Mining System consists of three
major elements: The segmentation module, the feature ex-
traction module, and the classification element. Based on
a modular workflow system, the user can choose and inter-
act with the different modules and create a dataflow. This
allows the user to enable and try out different settings in-
teractively. Different modules for feature extraction or seg-
mentation can be integrated. Figure 3 gives an overview of
a typical workflow.

In the following sections, we focus on the different mod-
ules in more detail.

4.1. Segmentation

In order to calculate the features for each cell individu-
ally, the cell assay image has to be segmented. We prefer
this approach in contrast to [10], because we need to iden-
tify interesting substructures in one image. The segmenta-
tion allows us to consider the cells separately in order to
distinguish between different reactions of cells in the same
image.

Unfortunately, the appearance of different cell types can
vary dramatically. Therefore, different methods for seg-
mentation have to be applied according to the different cell

Image Acquisition

Active Learning

Segmentation

Fuzzy c-means

Feature Extraction

Evaluation

Figure 3. Workflow

types. Work to segment and subdivide cells into the cell
nucleus and cytoplasm based on seeded region growing is
currently under progress. We follow the same assumption
as in the approach from [11] that is, the nucleus can be de-
tected more easily.

4.2. Feature Extraction

The feature extraction module calculates features of a
cell image based on the histogram (first order statistics) and
based on the texture (second order statistics). The histogram
features comprise the mean, variance, skewness, kurtosis,
and entropy of the histogram.

The 14 texture features from Haralick [8] represent sta-
tistics of the co-occurrence matrix of the gray level image.
Four co-occurrence matrices from horizontal, vertical, diag-
onal, and antidiagonal direction are averaged to achieve ro-
tation invariance. These features provide information about
the smoothness, contrast or randomness of the image - or
more general statistics about the relative positions of the
gray levels within the image.

4.3. Classification

The classification module comprises the initial fuzzy
c-means clustering, the cluster evaluation and the Active
Learning Module. As described in Section 3, we utilize
the FCM to obtain our first set of cluster prototypes. The
evaluation of the actual clustering can be based on several
factors:

Cluster Validity Measures can give us information of the
quality of the clustering [15]. We employ the within
cluster variation and the between cluster variation as an



indicator. This descriptor can be useful for the initial
selection of features. Naturally, the significance of this
method decreases with the proceeding steps of labeling
and adaptation of the cluster prototypes.

Visual Cluster Inspection allows the user to make a judg-
ment of the clustering quality. Instead of presenting the
numerical features, we select the corresponding image
of the data tuple that is closest to the cluster prototype.
We display the images with the highest membership to
the actual cluster and the samples at the boundary be-
tween two clusters if they are in different classes. This
approach is obviously prone to mistakes due to wrong
human perception and should therefore be used only as
an overview technique.

Evaluation in Adaptive Active Learning is performed as
described in Section 3.3 where we judge the new clas-
sification based on the previously labelled examples.
This method is the most suitable method to evaluate
the quality of the classification. It also allows for the
possibility to show the progress of the classification, so
that the user can decide whether he wants to continue
or not.

The classification of new images is obtained by classify-
ing each individual cell within the given image. Each cell
is assigned to a cluster and its corresponding class. The
proportion of the distribution of the different classes is the
decisive factor for classifying the whole image. If a clear
majority decision can be made, the image is not considered
further. Borderline cases with equal distributions of classes
are sorted into a special container to be assessed manually
by the biological expert. It becomes apparent that this ap-
proach allows for a rather high fault tolerance, as a human
will have no objections to label a few images by hand rather
than to risk a misclassification.

5. Experimental Results

As is the nature of the active learning problem, we do not
have a large labeled dataset available to test the performance
of our scheme. Therefore, we have created several artificial
test sets to evaluate our classifier.

The first test set demonstrates the mode of action of our
new active clustering scheme and is shown in Figure 1. It
is a 3-dimensional artificial test set consisting of 4036 sam-
ples. The class label is indicated as the brightness. This
dataset shows a typical problem where one class is un-
derrepresented and the decision boundaries of the unsuper-
vised clustering are not optimal because of the bias of the
data. Figure 4 shows the class boundaries of the cluster
prototypes and the decision boundaries. The optimum of
10 steps has been performed, selecting N = 5 examples

Figure 4. Movement of cluster prototypes
over time and set of additionally labeled ex-
amples

in each iteration. As can clearly be seen, the active clus-
tering scheme improves the positions of the cluster proto-
types significantly to reduce the classification error. On the
other hand, too many steps decrease the performance. An
overview of the number of steps and the misclassification
rate is shown in Table 1. As we can see, the bias of the clas-

# steps Misclassification rate
0 16.13 %
5 11.89%
8 8.94%
9 8.57%

10 8.00%
11 8.45%
12 8.82%
15 10.16%
25 25.54%

Table 1. Number of steps vs. Misclassifica-
tion Rate

sifier can be reduced and the decision boundaries between
overlapping classes in the feature space can be optimized.

In our second test set, we added some noise to the clus-
ters to test how distortion of class labels at the border in-
fluences the moving of the cluster prototypes. The effect
on this dataset is shown in Figure 5. With the increasing
noise at the border between clusters, the misclassification
rate based on the initial unsupervised clustering naturally
increases, too. With 10 steps and N = 5 labeled exam-
ples on the borders, we improved the misclassification rate
from 17.95 % to 9.97 %. We increased the noise at the bor-
ders (see Figure 6) with the result that the misclassification
rate improved from 27.77 % to 17.96 % . In this case, the
initial clustering had two cluster prototypes that belonged



Figure 5. Movement of cluster prototypes
over time and set of additionally labeled ex-
amples with noise

to the same class. This could be neutralized by requery-
ing the labels for the cluster prototypes in each step of our
adaptive active clustering procedure. This seems also use-
ful to explore new classes in the dataset that have not yet
been found if not enough clusters have been used. We ob-
served this phenomenon in the Ionosphere-dataset from the
UCI Repository [5], too. Having used four clusters to clas-
sify the data, only one class has been found from the initial
fuzzy c-means clustering. The additional queries allowed to
find the second class and due to this we were able to shift
the classification accuracy. However, this is not the major
goal of our algorithm.

Figure 6. Movement of cluster prototypes
over time and set of additionally labeled ex-
amples with more noise

6. Related Work

There have been a number of approaches to perform par-
tial supervision in the clustering process. In the aforemen-
tioned works from [1] and [7], the objective function of
the fuzzy c-means algorithm is extended by a cost factor
for violating pairwise constraints. In the work of [14], la-
beled patterns are incorporated in the objective function of
the Fuzzy ISODATA algorithm. All these approaches take
a set of labeled patterns or constraints as input before the
clustering process is started. These samples are selected
randomly.

In [9], a very similar approach to our own work has
been proposed that selects the points to query based on the
Voronoi diagram that is induced by the reference vectors.
The datapoints to query are selected from the set of Voronoi
vertices with different strategies. However, our approach
differs from all others in the way that the data is preclustered
before supervision enhances the classification accuracy and
the queries can be obtained in a fast and simple way.

7. Conlusions and Future Work

In this work, we have addressed the problem of classify-
ing a large dataset when only a few labeled examples can
be provided by the user. We have shown that the fuzzy c-
means algorithm is well applicable for stable initial cluster-
ing and that it has the advantage that data points on the bor-
der can easily be detected by scanning through their mem-
berships to the cluster prototypes. Based on the labels of
the selected examples at the borders between clusters and
the labeled cluster prototypes, we have proposed to move
the cluster prototypes, similar to the Learning Vector Quan-
tization (LVQ) method. We have shown that the misclas-
sification rate can be improved, especially when the class
distributions are skewed. We have discussed an application
in the mining of cell assay images, where the data often in-
herits the aforementioned properties.

Future work needs to be done to optimize the number
N of queries that are posed during the active clustering
process. It would be desirable to pose just as many queries
as necessary. Another important point are wrong classifi-
cations given by the user. Examples that contradict each
other in terms of the model by their given labels could be
requeried to be able to filter out wrong human classifica-
tions.
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