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Abstract 
 
 In this paper, we clearly demonstrate that genetics-based 
multiobjective rule selection can significantly improve the 
accuracy-complexity tradeoff curve of extracted rule sets 
for classification problems. First a prespecified number of 
rules are extracted from numerical data with continuous 
attributes using a heuristic rule extraction criterion. Then 
genetics-based multiobjective rule selection is applied to the 
extracted rule set to find a number of non-dominated rule 
subsets with respect to the classification accuracy and the 
number of rules. Experimental results clearly show that 
multiobjective rule selection finds a number of smaller rule 
subsets with higher accuracy than heuristically extracted 
rule sets. That is, the accuracy-complexity tradeoff curve is 
improved by multiobjective rule selection. 
 
1. Introduction 
 
 Almost all real-world decision making problems involve 
multiple objectives. These objectives usually conflict with 
each other. In the case of knowledge extraction, we want to 
maximize the accuracy of extracted rules. At the same time, 
we want to minimize their complexity (i.e., maximize their 
interpretability). Evolutionary multiobjective optimization 
(EMO) is an active research area in the field of evolutionary 
computation (see Deb [1] and Coello et al. [2]). The main 
advantage of EMO approaches over conventional 
optimization techniques is that a number of non-dominated 
solutions are simultaneously obtained by their single run. 
The obtained non-dominated solutions help the decision 
maker to understand the tradeoff structure between 
conflicting objectives (e.g., through their visualization). 
Such knowledge about the tradeoff structure in turn helps 
the decision maker to choose the final solution from the 
obtained non-dominated ones.  
 In some conventional (i.e., non-evolutionary) approaches 
to multiobjective optimization, the decision maker is 
supposed to integrate multiple objectives into a single scalar 
objective function by assigning a relative weight to each 
objective. The assessment of the relative weight, however, 
is usually very difficult because the decision maker has no a 

priori information about the tradeoff between conflicting 
objectives. For example, it is very difficult to assign relative 
weights to the two major goals in knowledge extraction: 
accuracy maximization and complexity minimization. In 
other conventional approaches, the decision maker is 
requested to assign the target value to each objective. The 
specification of the target value is also difficult for the 
decision maker. For example, it is not easy to specify the 
target values for the classification accuracy and the number 
of extracted rules before the decision maker knows the 
tradeoff structure between the accuracy and the complexity 
of rule sets for a particular classification problem at hand. 
 Recently EMO approaches have been employed in some 
studies on modeling and classification. For example, 
Kupinski & Anastasio [3] used an EMO algorithm to 
generate non-dominated neural networks on a receiver 
operating characteristic curve. Gonzalez et al. [4] generated 
non-dominated radial basis function networks of different 
sizes. Abbass [5] used a memetic EMO algorithm (i.e., a 
hybrid EMO algorithm with local search) to speed up the 
back-propagation algorithm where multiple neural networks 
of different sizes were evolved to find an appropriate 
network structure. Non-dominated neural networks were 
combined into a single ensemble classifier in [6]-[8]. The 
use of EMO algorithms to design ensemble classifiers was 
also proposed in Ishibuchi & Yamamoto [9] where multiple 
fuzzy rule-based classifiers of different sizes were generated. 
In some studies on fuzzy rule-based systems [10]-[17], 
EMO algorithms were used to analyze the tradeoff between 
accuracy and interpretability. 
 In this paper, we intend to clearly demonstrate the 
effectiveness of EMO approaches to knowledge extraction 
from numerical data for classification problems with many 
continuous attributes. First we briefly explain some basic 
concepts in multiobjective optimization in Section 2. Next 
we explain our EMO approach to knowledge extraction. 
Our approach consists of two stages: heuristic rule 
extraction (i.e., data mining stage) and genetics-based 
multiobjective rule selection (i.e., optimization stage). 
These two stages are described in Section 3 and Section 4, 
respectively. In the second stage of our EMO approach, 
knowledge extraction is formulated as a two-objective rule 



selection problem. The two objectives are to maximize the 
classification accuracy and to minimize the number of rules. 
An EMO algorithm is employed to efficiently find a number 
of non-dominated rule sets with respect to these two 
objectives for classification problems with many continuous 
attributes. In Section 5, obtained non-dominated rule sets 
are compared with heuristically extracted rule sets. Finally 
Section 6 concludes this paper. 
 
2. Multiobjective Optimization 
 
 We explain some basic concepts in multiobjective 
optimization using the following k-objective problem: 

  Minimize ))(...,),(),(( 21 yyyz kfff= ,     (1) 
  subject to Yy∈ ,             (2) 

where z is the objective vector, y is the decision vector, and 
Y is the feasible region in the decision space. Since the k 
objectives usually conflict with each other, there is no 
absolutely optimal solution *y  ( Yy ∈* ) that satisfies the 
following relation with respect to all objectives: 

  i∀  }:)(min{)( * Yyyy ∈= ii ff .       (3) 

 In general, multiobjective optimization problems have a 
number of non-dominated (i.e., Pareto-optimal) solutions. 
Now we briefly explain the concept of Pareto-optimality. 
Let a and b be two feasible solutions of the k-objective 
problem in (1)-(2). When the following condition holds, a 
can be viewed as being better than b: 

  i∀  )()( ba ii ff ≤   and  j∃  )()( ba jj ff < .   (4) 

In this case, we say that a dominates b (equivalently b is 
dominated by a). This dominance relation between a and b 
in (4) is sometimes denoted as ba p . 
 When b is not dominated by any other feasible solutions, 
b is referred to as a non-dominated (i.e., Pareto-optimal) 
solution of the k-objective problem in (1)-(2). That is, b is a 
Pareto-optimal solution when there is no feasible solution a 
that satisfies ba p . The set of all Pareto-optimal solutions 
forms a tradeoff surface in the k-dimensional objective 
space. This tradeoff surface in the objective space is 
referred to as the Pareto-front. Various EMO algorithms 
have been proposed to efficiently find a number of Pareto-
optimal (or near Pareto-optimal) solutions that are 
uniformly distributed on the Pareto-front [1]-[2]. 
 
3. Heuristic Extraction of Classification Rules 
 
 Our EMO approach to knowledge extraction consists of 
two stages: heuristic rule extraction and genetics-based 
multiobjective rule selection. In the first stage (i.e., data 
mining stage), a prespecified number of promising rules are 
efficiently extracted in a heuristic manner. Then a number 

of non-dominated rule sets, which are subsets of the 
extracted rules, are found by an EMO algorithm in the 
second stage (i.e., optimization stage). These two stages are 
explained in this section and the next section, respectively.  
 Let us assume that we have m training (i.e., labeled) 
patterns =px )...,,( 1 pnp xx , mp ...,,2,1=  from M classes 
in the n-dimensional continuous pattern space where pix  is 
the attribute value of the p-th training pattern for the i-th 
attribute ( ni ...,2,1,= ). We denote these training patterns 
by D (i.e., }...,,{ 1 mD xx= ). We also denote training 
patterns from Class h as )Class( hD  where Mh ...,,2,1= . 
 For our n-dimensional M-class classification problem, 
we use the following classification rule: 

  Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA   
       then Class qC  with qCF ,     (5) 
where qR  is the label of the q-th rule, )...,,( 1 nxx=x  is an 
n-dimensional pattern vector, qiA  is an antecedent interval, 

qC  is a class label, and qCF  is a rule weight (i.e., certainty 
grade). Each antecedent condition “ ix  is qiA ” means the 
inclusion relation qii Ax ∈  (i.e., the inequality relation 

U
qiiL

qi AxA ≤≤  where ],[ U
qi

L
qiqi AAA = ). We denote the 

antecedent part of the classification rule qR  in (5) by the 
interval vector qA  where )...,,( 1 qnqq AA=A . Thus qR  is 
denoted as “ qq CClass⇒A ”. 
 The first step to heuristic rule extraction is the 
discretization of the domain interval of each continuous 
attribute into antecedent intervals. Since we usually have no 
a priori information about an appropriate granularity of the 
discretization for each attribute, we simultaneously use 
multiple partitions with different granularities (i.e., from 
coarse partitions into a few intervals to fine partitions into 
many intervals). This is one characteristic feature of our 
approach to knowledge extraction. Since we simultaneously 
use multiple partitions with different granularities, we need 
no heuristic criteria to compare different granularities (i.e., 
to determine the number of intervals for each attribute). In 
computational experiments, we use five partitions into K 
intervals where =K 1, 2, 3, 4, 5 (see Fig. 1). It should be 
noted that =K 1 corresponds to the whole domain interval. 
 

 

K = 1
K = 2
K = 3
K = 4
K = 5

 
Fig. 1. Five partitions with different granularities used in our 
computational experiments. 

 
 As shown in Fig. 1, the whole domain interval is divided 



into K intervals. To specify )1( −K  cutting points for each 
attribute, we use an optimal splitting method [18] based on 
the class entropy measure [19]: 
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where )...,,( 1 KAA  is K intervals generated by the 
discretization of an attribute, jD  is the set of training 
patterns in the interval jA , and jhD  is the set of training 
patterns from Class h in jD . Using the optimal splitting 
method [18], we can efficiently find the optimal )1( −K  
cutting points that minimize the class entropy measure in 
(6). In this manner, we can obtain multiple partitions for 
various values of K for each attribute. 
 When we use five partitions with =K 1, 2, 3, 4, 5 in Fig. 
1, we have 15 antecedent intervals for each attribute. This 
means that we have n15  combinations of the antecedent 
intervals for our n-dimensional classification problem. Such 
a combination corresponds to the antecedent part of each 
classification rule in (5). 
 The next step to heuristic rule extraction is the 
determination of the consequent class qC  and the rule 
weight qCF  for each combination qΑ  of the antecedent 
intervals. This is performed by calculating the confidence of 
the classification rule “ hq Class⇒A ” for each class h (see 
[20] for the confidence measure). Let )( qD A  be the set of 
compatible training patterns with the antecedent part qA : 

  }...,,|{)( 11 qnpnqppq AxAxD ∈∈= xA .     (7) 

When )( qD A  is empty, we do not generate any rule with 
the antecedent part qA . 
 The confidence of “ hq Class⇒A ” is calculated as  

  )()Class()()Class( qqq DhDDhc AAA I=⇒ , 

                 Mh ...,,2,1= .  (8) 

The confidence of “ hq Class⇒A ” in (8) is the ratio of 
compatible training patterns with qA  from Class h to all 
the compatible training patterns. Another measure called 
support has also been frequently used in the literature [20]. 
The support of “ hq Class⇒A ” is calculated as  

  DhDDhs qq )Class()()Class( IAA =⇒ , 

                  Mh ...,,2,1= .  (9) 

 The consequent class qC  is specified as the class with 
the maximum confidence: 

}1,2,...,|)Class({max)Class( MhhcCc qqq =⇒=⇒ AA . 
                      (10) 

We have the same consequent class as in (10) even when 

we use the support in (9) instead of the confidence in (8). 
The consequent class qC  is the dominant class among the 
compatible training patterns with the antecedent part qA . 
As we have already mentioned, we do not generate any rule 
with the antecedent part qA  when there is no compatible 
training patterns with qA .  
 We specify the rule weight qCF  by the confidence as 

  )Class( qqq CcCF ⇒= A .           (11) 

The rule weight qCF  is used in the classification phase of 
new patterns in the following manner. When a new pattern 
is to be classified by a rule-based classification system, first 
all compatible rules with the new pattern are found. Then a 
single winner rule with the largest rule weight is identified 
among the compatible rules. Finally the new pattern is 
classified as the consequent class of the winner rule. 
 Using the above-mentioned rule generation procedure, 
we can generate a huge number of classification rules by 
examining the n15  combinations of the antecedent intervals. 
For high-dimensional classification problems, it may be 
impractical to examine all the n15  combinations. Thus we 
only examine short rules with a small number of antecedent 
conditions. It should be noted that the antecedent interval 
corresponding to =K 1 in Fig. 1 is actually equivalent to a 
“don’t care” condition. Thus all don’t care conditions with 
the antecedent interval for =K 1 can be omitted. In this 
paper, the number of antecedent conditions excluding don’t 
care conditions is referred to as the rule length. We only 
examine short rules of length maxL  or less (e.g., =maxL 3). 
This restriction on the rule length is to find simple 
classification rules with high interpretability. 
 We further decrease the number of rules by choosing 
only good rules with respect to a heuristic rule extraction 
criterion. That is, we choose a prespecified number of short 
rules for each class using a heuristic criterion. In our 
computational experiments, we use the following three 
heuristic criteria: 
Support with the minimum confidence level: Each rule is 
evaluated based on its support value when its confidence 
value is larger than the prespecified minimum confidence 
level. This criterion never extracts unqualified rules whose 
confidence values are smaller than the minimum confidence 
level. Five minimum confidence levels (0.5, 0.6, 0.7, 0.8, 
0.9) are examined in computational experiments. 
Product of confidence and support: Each rule is evaluated 
based on the product of its confidence and support values. 
Difference in support: Each rule is evaluated based on the 
difference between its support value and the total support 
value of the other rules with the same antecedent condition 
and different consequent classes. More specifically, the rule 

qR  with the antecedent condition qA  and the consequent 
class qC  is evaluated as follows: 
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This is a modified version of a heuristic rule evaluation 
criterion used in an iterative fuzzy genetics-based machine 
learning algorithm called SLAVE [21]. 
 We choose a prespecified number of promising rules 
with the largest values of each criterion in a greedy manner 
for each class. As we have already mentioned, only short 
rules of length maxL  or less are examined in the heuristic 
rule extraction stage in order to find interpretable rules. 
 
4. Multiobjective Rule Selection 
 
 Let us assume that we have N rules extracted from 
numerical data by heuristic rule extraction in the previous 
section (i.e., MN /  rules for each class). Genetics-based 
multiobjective rule selection is used to find non-dominated 
rule sets from these N rules with respect to the accuracy and 
the complexity (i.e., to find non-dominated subsets of the N 
rules). The accuracy maximization of a rule set S is 
performed by minimizing the error rate on training patterns 
by S. We include the rejection rate into the error rate (i.e., 
training patterns with no compatible rules in S are counted 
among errors in this paper). On the other hand, we measure 
the complexity of the rule set S by the number of rules in S. 
Thus our rule selection problem is formulated as follows: 

  Minimize )(1 Sf  and )(2 Sf ,           (13) 

where )(1 Sf  is the error rate on training patterns by the rule 
set S and )(2 Sf  is the number of rules in S. 
 Any subset S of the N candidate rules can be represented 
by a binary string of length N as 

  NsssS ⋅⋅⋅= 21 ,               (14) 

where 1=js  and 0=js  mean that the j-th candidate rule is 
included in S and excluded from S, respectively. Such a 
binary string is handled as an individual in our EMO 
approach. 
 Since feasible solutions (i.e., subsets of the extracted N 
rules) are represented by binary strings, we can directly 
apply almost all EMO algorithms to our rule selection 
problem in (13) using standard crossover and mutation 
operations. In this paper, we use an elitist non-dominated 
sorting genetic algorithm (NSGA-II) of Deb et al. [22] 
because it is a state-of-the-art well-known EMO algorithm 
with high search ability. 
 The NSGA-II algorithm randomly generates a 
prespecified number of binary strings of length N (say 

popN  strings) as an initial population. Each string is 
evaluated using Pareto ranking and a crowding measure. 

popN  new strings are generated by genetic operations (i.e., 

selection, crossover, and mutation). The generated offspring 
population is merged with the parent population. The next 
population is constructed by choosing popN  best strings 
from the merged population with pop2 N×  strings using 
Pareto ranking and a crowding measure as in the selection 
of parent strings. In this manner, the generation update is 
iterated until a prespecified stopping condition is satisfied. 
Non-dominated strings are chosen from the merged 
population at the final generation. These strings are 
presented to the human user as non-dominated rule sets. See 
Deb et al. [22] for details of the NSGA-II algorithm. 
 In the application of the NSGA-II algorithm to our rule 
selection problem, we use two problem-specific heuristic 
tricks in order to efficiently find small rule sets with high 
accuracy. One trick is biased mutation where a larger 
probability is assigned to the mutation from 1 to 0 than that 
from 0 to 1. This is for efficiently decreasing the number of 
rules in each rule set. The other trick is the removal of 
unnecessary rules, which is a kind of local search. Since we 
use the single winner-based method for classifying each 
pattern by the rule set S, some rules in S may be chosen as 
winner rules for no training patterns. We can remove these 
rules without degrading the first objective (i.e., the number 
of correctly classified training patterns). At the same time, 
the removal of unnecessary rules leads to the improvement 
in the other objectives. Thus we remove all rules that are 
not selected as winner rules for any training patterns from 
the rule set S. The removal of unnecessary rules is 
performed after the first objective is calculated and before 
the second and third objectives are calculated. 
 
5. Computational Experiments 
 
5.1. Settings of Computational Experiments 
 
 We use six data sets in Table 1: Wisconsin breast cancer 
(Breast W), diabetes (Diabetes), glass identification (Glass), 
Cleveland heart disease (Heart C), sonar (Sonar), and wine 
recognition (Wine) data sets. These six data sets are 
available from the UC Irvine machine learning repository 
(http://www.ics.uci.edu/~mlearn/). Data sets with missing 
values are marked by “*” in the third column of Table 1. 
Since we do not use incomplete patterns with missing 
values, the number of patterns in the third column does not 
include those patterns with missing values. All attributes are 
handled as continuous attributes in this paper. 
 We evaluate the performance of our EMO approach in 
comparison with the reported results on the same data sets 
in Elomaa & Rousu [18] where six variants of the C4.5 
algorithm were examined. The performance of each variant 
was evaluated by ten independent executions (with different 
data partitions) of the whole ten-fold cross-validation 
(10CV) procedure (i.e., 10CV10× ) in [18]. We show in the 



last two columns of Table 1 the best and worst error rates 
on test patterns among the six variants reported in [18] for 
each data set. 
 

Table 1. Data sets used in our computational experiments.  
C4.5 in [18]Data set Attributes Patterns Classes 

 Best    Worst
Breast W   9   683* 2   5.1   6.0
Diabetes   8 768 2 25.0 27.2

Glass   9 214 6 27.3 32.2
Heart C 13   297* 5 46.3 47.9
Sonar 60 208 2 24.6 35.8
Wine 13 178 3   5.6   8.8
* Incomplete patterns with missing values are not included. 

 In this section, we examine the accuracy of extracted 
rules by heuristic rule extraction and non-dominated rule 
sets obtained by genetics-based multiobjective rule 
selection for training patterns and test patterns. When the 
classification accuracy on training patterns is discussed, all 
the given patterns (excluding incomplete patterns with 
missing values) are used in heuristic rule extraction and 
multiobjective rule selection. On the other hand, we use the 
10CV procedure (i.e., 90% training patterns and 10% test 
patterns) when we examine the accuracy on test patterns.  
 We first explain computational experiments for 
examining the accuracy on training patterns where all the 
given patterns are used as training patterns. The accuracy of 
rules is evaluated on the same training patterns. 
 As in Fig. 1, we simultaneously use five partitions for 
each attribute. In the heuristic rule extraction stage, various 
specifications are used as the number of extracted rules for 
each class in order to examine the relation between the 
number of extracted rules and their accuracy. The number 
of extracted rules is specified as 1, 2, 3, 4, 5, 10, 20, 30, 40, 
50, and 100. The three heuristic criteria in Section 3 are 
used in the heuristic rule extraction stage. When multiple 
rules have the same value of a heuristic criterion, those rules 
are randomly ordered (i.e., random tie break). As we have 
already mentioned, the five specifications of the minimum 
confidence level (i.e., 0.5, 0.6, 0.7, 0.8, 0.9) are examined in 
the support criterion with the minimum confidence level.  
 The maximum rule length maxL  is specified as =maxL 2 
for the sonar data set and =maxL 3 for the other data sets. 
That is, candidate rules of length 2 or less are examined for 
the sonar data set while those of length 3 or less are 
examined for the other data sets. We use such a different 
specification because only the sonar data set involves a 
large number of attributes (i.e., it has a huge number of 
possible combinations of antecedent intervals).  
 For each specification of the heuristic rule extraction 
criterion, average results are calculated over 20 runs for 

each data set in order to decrease the possible effect of the 
random tie break. Then we choose the heuristic rule 
extraction criterion from which the best average error rate 
on training patterns is obtained among various criteria in the 
case of 100 rules for each class. The chosen heuristic rule 
extraction criterion is used to extract candidate rules for the 
genetics-based multiobjective rule selection stage. It should 
be noted that a different criterion is chosen for each data set.  
 As candidate rules in multiobjective rule selection, we 
extract 300 rules for each class from training patterns. Thus 
300M rules are used as candidate rules where M is the 
number of classes. The NSGA-II algorithm is applied to the 
extracted 300M rules using the following parameter values 
to find non-dominated rule sets with respect to the two 
objectives of our rule selection problem: 

  Population size: 200 strings, 
  Crossover probability: 0.8 (uniform crossover), 
  Biased mutation probabilities:  
    Mp 300/1)10(m =→   and  =→ )01(mp 0.1, 
  Stopping condition: 5000 generations.  

The extraction of 300M rules and the application of the 
NSGA-II algorithm are executed 20 times for each data set. 
Multiple non-dominated rule sets are obtained from each 
run of the NSGA-II algorithm. We calculate the error rate of 
each rule set on training patterns. Then the average error 
rate is calculated over rule sets with the same number of 
rules among 20 runs. Only when rule sets with the same 
number of rules are found in all the 20 runs, we report the 
average error rate for that number of rules in this section. 
 On the other hand, the 10CV procedure is used for 
examining the accuracy of rules on test patterns. First the 
10CV procedure is iterated three times (i.e., CV103× ) 
using various criteria in heuristic rule extraction. The 
average error rates on test patterns are calculated over the 
three iterations of the 10CV procedure for various 
specifications of a heuristic rule extraction criterion and the 
number of extracted rules. 
 We choose the heuristic rule extraction criterion from 
which the best average error rate on test patterns is obtained 
among various criteria in the case of 100 rules for each class. 
The chosen heuristic rule extraction criterion is used to 
extract candidate rules for the genetics-based multiobjective 
rule selection stage as in the computational experiments for 
examining the accuracy on training patterns. 
 Using the chosen heuristic rule extraction criterion for 
each data set, the 10CV procedure is iterated three times 
(i.e., CV103× ). In each run of CV103×  for each data set, 
300 candidate rules are extracted for each class from 
training patterns. The NSGA-II algorithm is applied to the 
300M candidate rules. The error rate on test patterns is 
calculated for each of the obtained non-dominated rule sets. 
The average error rate on test patterns is calculated for rule 



sets with the same number of rules over 30 runs in 
CV103× . Only when rule sets with the same number of 

rules are obtained from all the 30 runs, we report the 
average error rate for that number of rules in this section. 
 
5.2. Results on Training Patterns 
 
 In this subsection, we report experimental results on 
training patterns where average error rates are calculated on 
training patterns. 
Wisconsin Breast Cancer Data: Experimental results by 
heuristic rule extraction are summarized in Table 2 where 
the average error rate over 20 runs is shown for each 
combination of a heuristic rule extraction criterion and the 
number of extracted rules for each class. The best error rate 
in each row is indicated by bold face. Since the best result 
for the case of 100 rules for each class is obtained by the 
support with the minimum confidence level 0.6 in Table 2 
(see the last row), this heuristic rule extraction criterion is 
used in genetics-based multiobjective rule selection to 
extract 300 candidate rules for each class. 
 
Table 2. Average error rates on training patterns of extracted rules 
by heuristic rule extraction (Breast W). 

Support with minimum confidence Rules for 
each class 0.5 0.6 0.7 0.8 0.9 

Product Diff.

1 8.78 8.78 8.78 8.78 7.91 7.47 7.50
2 8.71 8.71 8.71 7.03 5.71 6.59 6.59
3 7.03 7.03 7.03 5.56 6.15 4.98 6.44
4 5.83 5.71 5.71 5.71 4.10 4.39 4.74
5 4.98 4.98 4.98 5.27 5.71 6.00 5.23

10 5.56 5.56 5.56 5.83 6.37 6.73 6.73
20 6.76 6.84 6.92 7.04 8.82 8.78 8.78
30 10.40 10.40 10.40 10.40 9.66 9.46 8.40
40 6.49 6.56 6.52 6.60 7.38 7.61 7.61
50 8.17 8.18 8.13 8.20 8.20 7.76 7.78
100 7.22 7.17 7.22 7.26 7.47 7.47 7.47

 
 
 In Fig. 2, we compare the average error rates between 
heuristic rule extraction and multiobjective rule selection. 
All the experimental results in Table 2 by heuristic rule 
extraction are depicted by closed circles whereas the 
average error rates of selected rules by multiobjective rule 
selection are shown by open circles. It should be noted that 
the horizontal axis in Fig. 2 is the total number of rules 
while the first column of Table 2 shows the number of rules 
for each class. From Fig. 2, we can see that smaller rule sets 
with lower error rates are found by multiobjective rule 
selection than heuristic rule extraction. That is, 
multiobjective rule selection improves the accuracy-
complexity tradeoff curve in Fig. 2. We can observe a clear 
tradeoff structure between the average error rate and the 

number of rules from the experimental results by 
multiobjective rule selection (i.e., open circles in Fig. 2). 
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Fig. 2. Comparison between heuristic rule extraction and genetics-
based multiobjective rule selection with respect to the average 
error rates on training patterns (Breast W). 

 
Diabetes Data: Experimental results by heuristic rule 
extraction are summarized in Table 3. An interesting 
observation in Table 3 (and also in Table 2) is that the 
increase in the number of extracted rules does not always 
lead to the improvement in the average error rates. Another 
interesting observation from the comparison between Table 
2 and Table 3 is that good results are obtained from 
different heuristic rule extraction criteria (e.g., see the sixth 
column with the label “0.9” of each table). That is, the 
choice of an appropriate criterion is problem-dependent. 
 
Table 3. Average error rates on training patterns of extracted rules 
by heuristic rule extraction (Diabetes). 

Support with minimum confidence Rules for 
each class 0.5 0.6 0.7 0.8 0.9 

Product Diff.

1 32.68 36.59 30.99 36.33 62.63 28.39 29.43
2 31.38 32.16 23.57 36.33 59.90 23.96 28.39
3 31.77 22.79 23.28 36.33 58.33 23.18 28.39
4 32.68 22.79 23.44 36.33 49.87 22.79 24.09
5 33.85 23.05 23.44 30.86 49.78 22.79 23.44

10 29.69 27.60 22.27 30.73 47.33 26.95 22.46
20 31.51 24.74 22.01 28.36 38.63 24.48 22.14
30 30.83 24.55 22.01 26.43 33.52 22.79 22.87
40 28.65 21.88 22.79 24.35 32.29 22.66 22.79
50 27.47 22.66 22.79 24.48 30.08 22.66 23.31
100 26.95 23.70 23.70 23.57 26.56 23.96 23.78

 
 
 In the same manner as Fig. 2, we compare heuristic rule 
extraction with multiobjective rule selection in Fig. 3. 



Whereas multiobjective rule selection does not always 
outperform heuristic rule selection when the number of rule 
is small, it finds good rule sets with 8-20 rules. The 
relatively poor performance of multiobjective rule selection 
in the case of small rule sets with 2-6 rules is due to the use 
of candidate rules extracted by the support criterion with the 
minimum confidence level 0.8. As shown in Table 3, the 
performance of this criterion is not good when the number 
of extracted rules is small. Better results will be obtained 
from multiobjective rule selection if we use other criteria 
such as the product of confidence and support to extract 
candidate rules. 
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Fig. 3. Comparison between heuristic rule extraction and genetics-
based multiobjective rule selection with respect to the average 
error rates on training patterns (Diabetes). 

 
Glass Identification Data: In the same manner as Fig. 2 
and Fig. 3, we compare heuristic rule extraction with 
multiobjective rule selection in Fig. 4. We can see from Fig. 
4 that much better results are obtained from multiobjective 
rule selection than heuristic rule extraction. That is, much 
better tradeoffs between the accuracy and the complexity 
are obtained from multiobjective rule selection. 
Cleveland Heart Disease Data: In the same manner as 
Figs. 2-4, experimental results are summarized in Fig. 5. 
Multiobjective rule extraction does not always outperform 
heuristic rule extraction when the number of rules is small. 
Multiobjective rule selection, however, finds much better 
rule sets than heuristic rule selection when the number of 
rules is large (e.g., 15-50 rules). We obtained a similar 
observation in Fig. 3 for the Diabetes data set. 
Sonar Data: Experimental results are summarized in Fig. 6. 
We can see that much lower error rates are obtained by 
multiobjective rule selection than heuristic rule extraction 
for those rule sets with 6-15 rules. 
Wine Data: Experimental results are summarized in Fig. 7. 

All the 20 runs of the NSGA-II algorithm find rule sets with 
only 5 rules that can correctly classify all the given patterns. 
On the other hand, 30 rules can not correctly classify all the 
given patterns in the case of heuristic rule extraction. 
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Fig. 4. Comparison between heuristic rule extraction and genetics-
bases multiobjective rule selection with respect to the average 
error rates on training patterns (Glass). 
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Fig. 5. Comparison between heuristic rule extraction and genetics-
bases multiobjective rule selection with respect to the average 
error rates on training patterns (Heart C). 

 
5.3. Results on Test Patterns 
 
 In this subsection, we report experimental results on test 
patterns where average error rates on test patterns are 
calculated by three iterations of the 10CV procedure. 
Heuristic rule extraction and genetics-based multiobjective 
rule selection are compared with each other. Our 
experimental results are also compared with the reported 
results of the C4.5 algorithm in Elomaa and Rousu [18]. 
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Fig. 6. Comparison between heuristic rule extraction and genetics-
bases multiobjective rule selection with respect to the average 
error rates on training patterns (Sonar). 
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Fig. 7. Comparison between heuristic rule extraction and genetics-
bases multiobjective rule selection with respect to the average 
error rates on training patterns (Wine). 

 
Wisconsin Breast Cancer Data: Experimental results by 
heuristic rule extraction are summarized in Table 4 where 
the average error rate on test patterns over three iterations of 
the 10CV procedure is shown for each combination of a 
heuristic rule extraction criterion and the number of 
extracted rules for each class. The best error rate in each 
row is indicated by bold face. The best result for the case of 
100 rules for each class is obtained by the difference 
criterion in support in Table 3. So we use this heuristic rule 
extraction criterion in genetics-based multiobjective rule 
selection to extract 300 candidate rules for each class from 
training patterns in each run of the 10CV procedure. 
 In Fig. 8, we compare heuristic rule extraction with 
multiobjective rule selection by depicting the average error 
rates on test patterns. Much better results are obtained by 

multiobjective rule selection. The dotted and dashed lines 
show the worst and best results of the C4.5 algorithm in 
Elomaa and Rousu [18], respectively. We can see that 
multiobjective rule selection outperforms the best result of 
the C4.5 algorithm with respect to the generalization ability. 
 

Table 4. Average error rates on test patterns of extracted rules by 
heuristic rule extraction (Breast W). 

Support with minimum confidence Rules for 
each class 0.5 0.6 0.7 0.8 0.9 

Product Diff.

1 11.19 11.19 11.19 11.19 7.66 7.42 7.45
2 8.30 8.52 8.67 8.12 5.77 6.53 6.50
3 6.71 6.71 6.71 5.55 5.89 5.95 6.23
4 5.31 5.50 5.29 5.53 5.29 5.17 5.78
5 4.97 5.09 5.02 5.36 5.83 5.74 5.53

10 5.70 5.69 5.73 6.05 6.09 6.69 6.61
20 6.50 6.45 6.47 6.75 8.64 8.40 8.17
30 9.52 9.51 9.52 9.66 8.91 8.09 7.54
40 7.49 7.52 7.48 7.61 7.14 7.18 7.13
50 7.56 7.55 7.55 7.56 7.73 7.55 7.56
100 7.53 7.52 7.54 7.54 7.38 7.09 7.09
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Fig. 8. Experimental results of the 10CV procedure (Breast W). 

 
Diabetes Data: In the same manner as Fig. 8, we compare 
the average error rates on test patterns between heuristic 
rule extraction and multiobjective rule selection in Fig. 9. 
Experimental results show that multiobjective rule selection 
does not outperform heuristic rule extraction in terms of 
error rates on test patterns for the diabetes data set. 
Glass Identification Data: Experimental results are 
summarized in Fig. 10. Fig. 10 clearly shows that better 
results are obtained from multiobjective rule selection than 
heuristic rule extraction. 
Cleveland Heart Disease Data: Experimental results are 
summarized in Fig. 11 where multiobjective rule selection 
does not always outperform heuristic rule extraction. 
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Fig. 9. Experimental results of the 10CV procedure (Diabetes). 
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Fig. 10. Experimental results of the 10CV procedure (Glass). 
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Fig. 11. Experimental results of the 10CV procedure (Heart C). 

Sonar Data: Experimental results are summarized in Fig. 
12. We can see from Fig. 12 that lower error rates are 
obtained by multiobjective rule selection than heuristic rule 
extraction when the number of rules is 9-12. 
Wine Data: Experimental results are summarized in Fig. 13. 
We can see from Fig. 13 that very small rule sets of only 3 
or 4 rules obtained by multiobjective rule selection have 
almost the same generalization ability as much larger rule 
sets of 30-150 rules obtained by heuristic rule extraction. 
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Fig. 12. Experimental results of the 10CV procedure (Sonar). 
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Fig. 13. Experimental results of the 10CV procedure (Wine). 

 
6. Conclusions 
 
 We compared heuristic rule extraction with genetics-
based multiobjective rule selection through computational 
experiments on six data sets from the UC Irvine machine 
learning repository. Experimental results showed that 



multiobjective rule selection improved the accuracy-
complexity tradeoff curve of heuristically extracted rules by 
searching for good combinations of a small number of rules. 
This improvement was observed in all experiments with 
respect to the accuracy on training patterns and most 
experiments with respect to the accuracy on test patterns. 
Except for the glass data set, multiobjective rule selection 
was comparable to or outperformed the C4.5 algorithm in 
terms of the generalization ability of obtained rule sets.  
 Since a large number of rules are usually obtained from 
data mining, multiobjective rule selection seems to be a 
promising direction to decrease the complexity of extracted 
rules. One difficulty of our EMO approach is its large 
computational load when it is applied to large data sets. 
 
Acknowledgement 
 
 This work was partially supported by Japan Society for 
the Promotion of Science (JSPS) through Grand-in-Aid for 
Scientific Research (B): KAKENHI (17300075). 
 
References 
 
[1] K. Deb, Multi-Objective Optimization Using Evolutionary 

Algorithms, John Wiley & Sons, Chichester, 2001. 
[2] C. A. Coello Coello, D. A. van Veldhuizen, and G. B. Lamont, 

Evolutionary Algorithms for Solving Multi-Objective Problems, 
Kluwer Academic Publishers, Boston, 2002. 

[3] M. A. Kupinski and M. A. Anastasio, “Multiobjective genetic 
optimization of diagnostic classifiers with implications for 
generating receiver operating characteristic curve,” IEEE 
Trans. on Medical Imaging, vol. 18, no. 8, pp. 675-685, 
August 1999. 

[4] J. Gonzalez, I. Rojas, J. Ortega, H. Pomares, F. J. Fernandez, 
and A. F. Diaz, “Multiobjective evolutionary optimization of 
the size, shape, and position parameters of radial basis function 
networks for function approximation,” IEEE Trans. on Neural 
Networks, vol. 14, no. 6, pp. 1478-1495, November 2003. 

[5] H. A. Abbass, “Speeding up back-propagation using 
multiobjective evolutionary algorithms,” Neural Computation, 
vol. 15, no. 11, pp. 2705-2726, November 2003. 

[6] H. A. Abbass, “Pareto neuro-evolution: Constructing ensemble 
of neural networks using multi-objective optimization,” Proc. 
of Congress on Evolutionary Computation, pp. 2074-2080, 
Canberra, Australia, December 8-12, 2003. 

[7] A. Chandra and X. Yao, “DIVACE: Diverse and accurate 
ensemble learning algorithm,” Lecture Notes in Computer 
Science 3177: Intelligent Data Engineering and Automated 
Learning - IDEAL 2004, Springer, Berlin, pp 619-625, August 
2004. 

[8] A. Chandra and X. Yao, “Evolutionary framework for the 
construction of diverse hybrid ensemble,” Proc. of the 13th 
European Symposium on Artificial Neural Networks - ESANN 
2005, pp 253-258, Brugge, Belgium, April 27-29, 2005. 

[9] H. Ishibuchi and T. Yamamoto, “Evolutionary multiobjective 
optimization for generating an ensemble of fuzzy rule-based 

classifiers,” Lecture Notes in Computer Science, vol. 2723, 
Genetic and Evolutionary Computation - GECCO 2003, pp. 
1077-1088, Springer, Berlin, July 2003. 

[10] H. Ishibuchi, T. Murata, and I. B. Turksen, “Single-objective 
and two-objective genetic algorithms for selecting linguistic 
rules for pattern classification problems,” Fuzzy Sets and 
Systems, vol. 89, no. 2, pp. 135-150, July 1997. 

[11] H. Ishibuchi, T. Nakashima, and T. Murata, “Three-objective 
genetics-based machine learning for linguistic rule 
extraction,” Information Sciences, vol. 136, no. 1-4, pp. 109-
133, August 2001. 

[12] O. Cordon, M. J. del Jesus, F. Herrera, L. Magdalena, and P. 
Villar, “A multiobjective genetic learning process for joint 
feature selection and granularity and contexts learning in 
fuzzy rule-based classification systems,” in J. Casillas, O. 
Cordon, F. Herrera, and L. Magdalena (eds.), Interpretability 
Issues in Fuzzy Modeling, pp. 79-99, Springer, Berlin, 2003. 

[13] F. Jimenez, A. F. Gomez-Skarmeta, G. Sanchez, H. Roubos, 
and R. Babuska, “Accurate, transparent and compact fuzzy 
models by multi-objective evolutionary algorithms,” in J. 
Casillas, O. Cordon, F. Herrera, and L. Magdalena (eds.), 
Interpretability Issues in Fuzzy Modeling, pp. 431-451, 
Springer, Berlin, 2003. 

[14] H. Ishibuchi and T. Yamamoto, “Fuzzy rule selection by 
multi-objective genetic local search algorithms and rule 
evaluation measures in data mining,” Fuzzy Sets and Systems, 
vol. 141, no. 1, pp. 59-88, January 2004. 

[15] H. Ishibuchi, T. Nakashima, M. Nii, Classification and 
Modeling with Linguistic Information Granules: Advanced 
Approaches to Linguistic Data Mining, Springer, Berlin, 
November 2004. 

[16] H. Wang, S. Kwong, Y. Jin, W. Wei, and K. F. Man, “Agent-
based evolutionary approach for interpretable rule-based 
knowledge extraction,” IEEE Trans. on Systems, Man, and 
Cybernetics - Part C: Applications and Reviews, vol. 35, no. 
2, pp. 143-155, May 2005. 

[17] H. Wang, S. Kwong, Y. Jin, W. Wei, and K. F. Man, “Multi-
objective hierarchical genetic algorithm for interpretable 
fuzzy rule-based knowledge extraction,” Fuzzy Sets and 
Systems, vol. 149, no. 1, pp. 149-186, January 2005. 

[18] T. Elomaa and J. Rousu, “General and efficient multisplitting 
of numerical attributes,” Machine Learning, vol. 36, no. 3, pp. 
201-244, September 1999. 

[19] J. R. Quinlan, C4.5: Programs for Machine Learning, 
Morgan Kaufmann Publishers, San Mateo, CA, 1993. 

[20] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. 
Verkamo, “Fast discovery of association rules,” in U. M. 
Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy 
(eds.), Advances in Knowledge Discovery and Data Mining, 
AAAI Press, Menlo Park, pp. 307-328, 1996. 

[21] A. Gonzalez and R. Perez, “SLAVE: A genetic learning 
system based on an iterative approach,” IEEE Trans. on Fuzzy 
Systems, vol. 7, no. 2,  pp. 176-191, April 1999. 

[22] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A fast and 
elitist multiobjective genetic algorithm: NSGA-II,” IEEE 
Trans. on Evolutionary Computation, vol. 6, no. 2, pp. 182-
197, April 2002. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


