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Abstract

We investigate various latent variable models of traffic
flow. More specifically, we present various structured multi-
nomial mixture models for analyzing source-destination
traffic. A “highway’ model is formulated which posits high-
way entrance and exit hubs, and highway traffic between
the entrances and exits. The model’s structure is based on
an analogy with car traffic from a local origin in one city
to a destination in another city. The model’s parameters
correspond to an onramp traffic distribution from sources
to highway entrances, the highway traffic distribution be-
tween entrances and exits, and an offramp traffic distribu-
tion from highway exits to final destinations. The highway
traffic model extracts community structure based on source-
destination traffic information, but in addition captures the
aggregate ““highway” traffic between the communities. This
important distinction extends the highway traffic analysis
beyond clustering and allows it to extract out underlying
backbone traffic structure from traffic data. For compari-
son, we also describe a ““hub” traffic model with no high-
ways which has a latent variable structure that has been
well studied in the past.

1. INTRODUCTION

Traffic engineering and network design have been exten-
sively studied in the engineering communities. The inves-
tigations cover how best to route traffic based on an exist-
ing connectivity graph, and optimizing connectivity paths
to best fit the traffic. Source-destination traffic matrix esti-
mation has been addressed from a statistical perspective in
e.g.[1][2]. Here we present a probabilistic “highway” traf-
fic model of source-destination traffic. Our goal in the anal-
ysis is to model both the underlying community structure
and the aggregate traffic between communities. Viewing
the source-destination traffic matrix as a weighted graph,
we seek to discover both tightly connected regions in the

graph, and an underlying “highway” backbone structure in
the graph.

Our analysis extends latent variable models which have
appeared under the names Latent Class Models [3], Aggre-
gate Markov Models [4]-[6], Non-negative Matrix Factor-
ization (NMF)[7], and probabilistic LSA (pLSA)[8]. Many
of the recent applications of these models have been in
the fields of natural language processing and information
retrieval. These latent variable models when applied to
source-destination traffic data translate into a “hub” traf-
fic model with only onramp and offramp traffic to latent
hubs. The highway traffic latent variable model contains
both highway entrance and exit hubs, and highway traffic
between them. This allows the model to find both tightly
interconnected communities, and the traffic flow between
them. In addition to the analysis of source-destination traf-
fic data, the highway traffic model is applicable to the anal-
ysis of random walk traffic on a source-destination connec-
tivity graph. In related work, spectral clustering based on
finding communities which minimize transitions between
different communities has received considerable attention
in image segmentation[9][10].

An outline of this paper is as follows. First we describe
the highway traffic model and it’s relation to a hub traffic
model. Section 3 presents comparative analysis of the high-
way and hub traffic models for the analysis of traffic on an
autonomous system connectivity graph and computer skills
graph. Section 4 presents a symmetric hub traffic model.
The paper concludes with a discussion of some properties
of the highway traffic model.

2. Highway and Hub Traffic Models

Consider traffic flow data consisting of n;; counts of traf-
fic from source X = i to destination X’ = ;5. We assume
that all sources are destinations, and destinations sources.
Discrete latent variables H and H' are introduced which
characterize the underlying entrance hubs and exit hubs on
the highway. We assume that all entrances are exits, and



vice versa. Our model of traffic flow consists of onramp
traffic from sources to highway entrances, highway traffic
from entrances to exits, and offramp traffic from highway
exits to destinations. The model assigns a probability of
going from source 7 to destination j of:

p(i,5) = ainBri,
ol

where o, = P(X = i|H = k), iy = P(H =k, H' =1),
and y;; = P(X' = j|H' = 1). In words, o, is the fraction
of traffic at entrance & from source 4, By, is the probability
of going from entrance & to exit [ on the highway, and v;,
is the fraction of traffic at exit [ that proceed to destination
j. The double sum in the expression is over all highway en-
trances and exits. Note that the traffic model is probabilis-
tic, and in general allows for more than one highway route
from source to destination. We further impose a constraint
equating the onramp and offramp traffic distributions:

Vit = -

Thus the fraction of traffic at exit [ which continue to desti-
nation j is equal to the fraction of traffic at entrance [ which
originate from j. The model parameters are specified by
a(z|h) = P(z|h) and B(h,h’") = P(h,h’), which spec-
ify respectively the onramp/offramp traffic distribution, and
highway traffic between the entrances and exits. Let the to-
tal amount of observed traffic be N = _, ;n;;, and let
Di; = n;;/N be the observed empirical joint distribution
p(x = i,2" = j). The log-likelihood function is given by

L=N> p(x,a")log[y_ a(zh)B(h,h)a(a'|1)].

x,x’ h,h’

Maximizing the likelihood of the observed source-
destination traffic counts is equivalent to minimizing the
following Kullback-Leibler divergence:

D(p(z,2') || Y alalh)B(h, B )ala'|H)).

h,h!

The EM algorithm gives the following update equations
E-step

p<$,$/7h,h/)
q(h, h/\x, l‘/) = Z}}'p(m’ N0

where p(x,2’, h, ') = a(z|h)B(h, ' )a(z'|R).
M-step

(X =z, H=h)+pX =z H
- P(H =h)+p(H' = h)

5(]7'7 h/) = ﬁhh'7

a(z|h)

where pun, Pernry Dhy Prry @nd ppp are the corresponding
marginals of p,.-q(h, h'|z,z’).

Representing the model parameters « and 3 as matrices,
the highway traffic model seeks an approximation of the
empirical traffic distribution 5 by minimizing

D(p || aBat).

In comparison, a traffic model with the same structure as
pLSA/NMF [4][7][8] seeks to minimize

D(p | AB).

The traffic interpretation of this model, which will be re-
ferred to as the “hub” traffic model, consists of an onramp
distribution to the hubs from the sources, the hub distri-
butions, and the offramp distributions from hubs to des-
tinations. The highway model assumes more structure in
the traffic data, and is a constrained version of the hub
model. In particular, a highway model can always be rep-
resented as a hub model by equating corresponding terms
in (aB)(a) = (A)(B), effectively folding in the highway
traffic between entrances and exits into the onramp traffic
distribution specified by A. This comes at the cost of re-
duced sparseness of the onramp traffic distribution, and an
increase in complexity of the hub model. Without equating
onramp to offramp traffic in the highway model, the high-
way traffic has extra degrees of freedom since we can al-
ways write a8y = (af)(I)(y). Here the onramp traffic
incorporates the highway traffic, and now there is no cross-
traffic between entrances and exits. By equating onramp to
offramp traffic, these degrees of freedom are removed in the
highway traffic term (.

The highway and hub traffic models differ in complexity,
sparseness and structure. In Section 3.1, the highway and
hub traffic models will be compared using the Akaike Infor-
mation Criterion (AIC) and Bayesian Information Criterion
(BIC) scores, as well as predictive test-set log-likelihoods.
In Section 3.2, we demonstrate the extraction of a highway
backbone structure in a random walk traffic matrix.

3. Numerical Experiments
3.1 Synthetic graph analysis

We start with a simple example analysis which eluci-
dates the highway traffic model’s ability to find communi-
ties and their interrelations. A simple synthetic graph con-
sisting traffic between 12 nodes is depicted on the left in
Figure 1. Directed edges correspond to one traffic count in
the given direction, whereas undirected edges represent a
traffic count in both directions. The empirical joint source-
destination distribution for the graph has exact decomposi-
tions according to both the highway and hub traffic mod-
els, with zero KL-divergences. Thus, the comparison here



o} 00 €]
+ +

o ¢] o e}

o] o)

] 00 o 00

Figure 1. Synthetic graph decomposition
based on the highway traffic model. The
decomposition consist of four subgraphs of
tightly knit communities and four subgraphs
of relations between the communities.

Figure 2. The highway model’'s on-
ramp/offramp distribution (left), highway
traffic § (center), and highway traffic visual-
ization (right).

is in terms of the structure each model extracts from the
data. For the highway model, the EM algorithm described
above is run for 100 iterations starting from random initial-
izations for «(z|h) and B3(h, h'). The algorithm often finds
the exact decomposition as shown in the figure. The exact
decomposition of the graph consists of £ = 4 fully con-
nected communities consisting of 3 nodes each, given by
alzlh = )B(h = i,k = i)a(z’|W' = i). These are de-
picted in the top four subgraphs on the right in Figure 1. In
addition, the relations between the communities, as given
by a(z|h =i)B(h =i, h' = j)a(z'|h' = j), is depicted on
in the bottom four subgraphs.

In Figure 2, the onramp/offramp distribution parameter
«, and the highway traffic parameter 3 are displayed. In ad-
dition, a binary representation of the graph’s highway back-
bone structure is visualized by thresholding 3. For com-
parison, we fit a hub traffic model to the data. The corre-
sponding graph decomposition if shown in Figure 3. The
hub model all traffic within communities together with all
outbound traffic from that community. The hub model es-
sentially incorporated the highway traffic distribution into
the offramp distribution.

Figure 3. Synthetic graph decomposition
based on the hub traffic model.

The highway model’s analysis of this simple traffic
graph successfully captures the tightly knit communities
and their interrelations. In addition, the highway traffic ma-
trix 5(h, h') describes the highway backbone traffic struc-
ture in the data.

3.2. Autonomous system connectivity graph

We analyzed simulated internet traffic data based on
an undirected connectivity graph between Autonomous
Systems (AS). The connectivity graph consists of AS
paths in BGP routing tables collected by the server
route-views.oregon-ix.net. This data is the basis of the
power-law analysis in [11], and is publicly available at
http://topology.eecs.umich.edu/data.html.  After trimming
out nodes with no edges, we are left with an undirected bi-
nary AS connectivity graph with 13233 interconnected AS
nodes.

We compared the highway traffic model to the hub traf-
fic model normalizing for the complexity differences of the
two models. With & latent hub states in the hub model, and
n sources/destinations, the hub model has [2k(n—1)+k—1]
parameters. In contrast, the highway model with the same
number k or entrances/exits contains only [k(n—1)+k2—1]
parameters. We compared the two models using the Akaike
Information Criterion (AIC), Bayesian Information Crite-
rion (BIC), and predictive test-set log-likelihoods. The sim-
ulated traffic data was constructed as follows. For the train-
ing set, we performed 100000 single random walk steps
on the connectivity graph. The 100000 source nodes were
sampled in accordance with the stationary distribution of
the random walk on the connectivity graph. Traffic from
source nodes are assumed to follow each of the edge paths
with equal probability. Since multinomial mixture models
can be prone to over-fitting problems, we added a single
pseudo-count traffic for each edge in the connectivity graph.
If traffic from a source to a destination is not observed in



the test set, but appears in the training set, the traffic models
may assign zero probability to the test set likelihood. Early
stopping will effectively stop parameter updates if an up-
date assigns zero probability to a traffic path that appears
in the test set. An additional inverse annealing (heating) is
used in [8] to smooth multinomial parameters and prevent
sparseness. For the test set, 20000 single random walk steps
were simulated.

In Table 1 the AIC and BIC scores for the highway and
hub models are tabulated for a number of different & val-
ues. For each model and each %, 10 EM runs with random
parameter initializations are performed. Scores for the best
respective runs are reported in the table. The highway traffic
model has significantly better (lower) AIC and BIC scores
than the hub traffic model.

[ values x10° | k=26 | k=51 | k=100 | k=197 |

Highway AIC | 490 | 541 | 659 | 9.07
Hub AIC | 556 | 6.72 | 9.16 | 14.15

Highway BIC | 8.34 | 122 | 199 | 350
HubBIC | 124 |202 |355 |66.1

Table 1. AIC and BIC scores for the highway
and hub models.

We also compared predictive test-set log-likelihoods for
a highway model and hub model with comparable degrees
of freedom. Comparing the £ = 51 highway model with
677432 parameters with the k£ = 26 hub model with 688089
parameters, the best test set log-likelihoods (x10%) were
—2.64 and —2.74 for the highway and hub models re-
spectively. Comparing the £ = 100 highway model with
1333199 parameters with the £ = 51 hub model with
1349714 parameters, the best test set log-likelihood(x 10?)
were —2.55 and —2.63 respectively. Finally, the & = 197
highway model with 2645512 parameters and the £ = 100
hub model with 2646499 parameters had best test set log-
likelihoods(x 10°) of —2.46 and —2.54 respectively. In all
three comparisons, the highway model had slightly fewer
parameters, but significantly higher (less negative) predic-
tive test set log-likelihoods.

3.3. Random walk traffic on computer skills graph

Aside from complexity and sparseness considerations,
the highway model extracts underlying backbone traffic
structure which clustering models like the hub model does
not. We analyzed a smaller, more easily interpretable data
set to try to find communities and the relationships between
the communities. A computer jobs description data set, pro-
vided courtesy of Prof. Richard Martin and the IT consult-
ing firm Comrise was analyzed. The raw data consists of

a collection of computer job descriptions, each of which
contain a subset of 159 computer skills the hiring manager
considered important for the job. The most frequently oc-
curring skills keywords in the job descriptions are “unix”,
“pc(ibm)”, “windows95”, “windowsnt”, “c” and “oracle”.
Entries along the diagonal of the co-occurrence matrix con-
tain the number of times each skill occurred over all the
job descriptions. The elements of this matrix is interpreted
as a the amount of (co-occurrent) traffic between pairs of
job skills. This interpretation is equivalent to the normal-
ization used in the random walk view of segmentation [9].
From the co-occurrent traffic information on the computer
skills graph, we seek to extract out underlying computer
skill topic communities, and the underlying backbone con-
nectivity structure between the topic communities.

A visualization of the computer skills traffic graph is
shown in Figure 4(a) using the GraphViz [12] spring model
graph layout program from AT&T Labs-Research. Only
edge connections with average transition probability greater
than .085 are shown. Even though the graph is not very
large with 159 nodes, the visualization is not easily read-
able, and only provides vague clues to relationships be-
tween various skills.

From the job skills co-occurrence table the observed em-
pirical joint distribution p,- is constructed. The EM algo-
rithm is used to find the maximum likelihood estimators for
the conditional a(z|h) and the joint G(h, h').

Since the onramp and offramp traffic distributions are
equal in the highway model, we will simply refer to the
offramp traffic. The offramp traffic distribution from a few
exits are tabulated in Table 2 This specifies the fraction of
traffic at the specified exit which flow to each destination
node. The destination computer skill with the largest traf-
fic fraction is used as the label for the exit. The five top
skills, ranked in descending order of their conditional prob-
abilities are shown for each exit. From Table 2, we see a
UNI X skills community containing Unix, C and C++, and
a SUNOS operating systems community containing SunOS,
solaris and sunsparc, and an HP cluster with HP, HP-UX.
The model also identified skills groups affiliated with Mi-
crosoft, containing skills PC(IBM), Windows95, MSoffice,
MSproject and dos, and a Java group (not tabulated) con-
taining javascript, perl, cgi and html.

In addition to the communities of related computer skills,
the model also extracts out the relationships between the
communities. In Figure 4(b), we used GraphViz [12] to
visualize the underlying highway traffic between entrance
and exit hubs as defined by 3(h, h'). This backbone traffic
structure in the source-destination traffic data is visualized
by thresholding 5(h, h’) into a binary adjacency matrix. We
emphasize that this is only for visualization purposes; the
model contains more information than is visualized. From
the highway traffic graph, we see tightly coupled highway
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Figure 4. (a) Graph layout of the computer skills traffic graph using GraphViz’s spring model layout
algorithm. (b) Highway traffic visualization - each node in this graph is a highway entrance or exit
hub, and corresponds to a computer skills community. Onramp and offramp distributions to sources

and destinations are tabulated in Table 2.

Unix 156 SunOS .174 HP  .181 pc/ibm .214
c 154 solari 169  hp-ux .146 win95  .184
ct++ 123 tuxedo .016 tcpip .076 msoff 146
syb .050 sunspa .009 nis .008 mspro .050
jam 004 o0a&m .007 nfs .007 dos .027

Table 2. Onramp/offramp traffic distribution
for highway traffic model. The skills with
highest traffic fraction to/from the latent
states are listed in the first row, and used to
label the clusters in Figure 4(b). Each column
represents an entrance/exit hub. Fractions of
traffic to/from each skill is listed next to the
skill name.

traffic between the Unix, SunOS, HP communities, as well
as the Java and SunOS communities. The highway traf-
fic model successfully finds computer skills communities
as well as the relationships between the communities.

4. Symmetric Hub Traffic Model

The highway traffic model assumes that the traffic is
generated from an underlying highway traffic distribution,
onramp traffic distributions from sources to highway en-
trances, and an identically distributed offramp distribution

from highway exits to destinations. In contrast, the hub traf-
fic model only has onramp and offramp distributions, and
no analog of highway traffic. As discussed in Section 2,
the hub model contains the highway model as a special
case, where the composition of the onramp and highway
traffic is subsumed into a single onramp traffic distribution
for the hub model. Using the hub model to describe traffic
data comes at the complexity cost of roughly double (for
n >> k) the number of parameters as the highway model.
An even more restrictive traffic model can be defined by
equating onramp and offramp traffic distributions in the hub
model. A model with this structure was first investigated in
[14]. This “symmetric hub” model can be obtained from the
highway model by constraining 5(h, h’) to be diagonal.
We assume the traffic flow in the empirical joint dis-
tribution p(x,z’) is symmetric with respect to x and a'.
This implies that the transition matrix p(z’|x) is consistent
with a reversible random walk. Instead of minimizing the
Kullback-Leibler divergence for the highway traffic model:

D(p(a,a’) | Y a(z|h)B(h, h)ala’ 1)),

h,h'!

the symmetric hub model minimizes

D(p(x,a’) | Y a(zlh)B(h)ala’|1).

h,h'

The EM algorithm for this model results in the iterations:
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M-step
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This symmetric hub model is a constrained version of
both the hub model, and the highway model as follows.
First, the symmetric hub model can be seen as a hub model
with identically distributed onramp and offramp distribu-
tions. Second, the symmetric hub model is a highway model
with the constraint of no traffic between the entrance/exit
hubs.

This model does not directly capture relationships be-
tween communities since it does not directly model traffic
between hub communities. However, it can describe traffic
between hubs after two time steps of the empirical source-
destination transition. An inter-hub traffic can be specified
by combining the offramp traffic from hubs to destinations
during the first time step, with the onramp traffic from des-
tinations back to the hubs during the second time step. This
is computed as follows:

p(h, 1) = a(z|h)B(h)alz|k).

T

alz|h) = ZW

This 2-step inter-hub traffic layout for the computer skills
data is shown in Figure 5, with the onramp/offramp distri-
butions tabulated in Tables 3 and 4. The skills topic commu-
nities successfully combine unix groups, windows groups
and programming language groups, while the inter-hub traf-
fic successfully represents the relationships between topic
groups.

SunOS 172 HP 168 C++ .147
unix 145 hp-ux 139 C .067
solaris 142 tcp/ip  .080 ood .060
tuxedo .016 nis .009 nmake .031
sunsparc  .010 nfs .008 dec .007

Table 3. Onramp/offramp traffic distribution
for highway traffic model the hub traffic
model in Figure 5.

5. Highway traffic model properties

The source-destination traffic data analyzed in this paper
either directly translated into symmetrical empirical joint

mainframe
realtime

msexcel

msproject

Figure 5. Symmetric hub model inter-hub traf-
fic graph.

PC(IBM) .235 windowsnt .147 msexcel .101
win95 197  dos .068 msword .074
msoffice  .123  visualc++ .060 outlook .011
lot-notes  .014 visualbasic .031 visio .011
mac .002  vbscript .007 isdn .009

Table 4. Continuation of onramp/offramp traf-
fic distribution for Figure 5.

distributions (computer skills), or were simulated from a
reversible random walk (AS traffic). The highway traf-
fic model on the other hand can in general describe non-
symmetric traffic data. Looking at the model in more detail,
the equating of the onramp with the offramp traffic distribu-
tion in the model results in the following conditional distri-
bution within each community:

p(x,2'|h = 1) = a(z|h)a(z'|h).

This is the highway model’s predicted probability of tran-
siting from source x to highway entrance h, and immedi-
ately exiting to destination z’. This conditional distribution
matrix has rank 1 and satisfies the detailed balance condi-
tion. Thus, within each community, the random walk traf-
fic is symmetric, and one can show that 7, (z) = «a(x|k)
is simply the stationary distribution of the random walk
within each community. Even though the random walk
within each community is reversible, the highway model
can model non-reversible traffic depending on the highway



traffic distribution 3(h, h’).

If the highway traffic 5(h, h’) between communities is
symmetric with respect to source community (entrance)
and destination community (exit), thereby satisfying the de-
tailed balance condition, then the highway model describes
symmetric source-destination traffic. One can verify that if
the empirical traffic distribution is symmetric, and the high-
way traffic distribution S(h, h') is initialized symmetric,
then it will remain symmetric under all subsequent updates
under the EM algorithm. Thus reversible source-destination
traffic will be modeled with a reversible highway traffic
model.

The traffic model approximates the empirical traffic
flow in a maximum likelihood or minimum KL-divergence
sense. For example, an approximation of the source
traffic distribution can be obtained as follows. Let the
source distribution of the highway traffic model be 7(x) =
> npe (x[h)B(h, h"). Using Pinsker’s inequality [13] we
can bound the total variation distance between the empiri-
cal source distribution p(z) and the source distribution of
the highway model 7 (z)

> lb(a) — ()|
< V2D(p(x) || w(z))
< \/27?(25(33,13’) 1>~ alzlh)B(h, h)a(a'|h")).

h,h'
Similarly, the highway model can approximate any empir-
ical traffic flow from a source set of nodes to a destination
set, with the KL-divergence providing a bound on the ap-
proximation error.

6. Discussion

The symmetric hub model, highway model, and hub
model are constructed with various structures and associ-
ated complexities in the multinomial mixture. This is anal-
ogous to controlling the covariance structure in Gaussian
distributions, from spherical Gaussian, to Graphical Gaus-
sian models and Factor Analysis, to the full Gaussian with
arbitrary covariance structure.

We compared the highway and hub traffic models us-
ing the Akaike Information Criterion and also test set log-
likelihood for the ASP data set. The suitability of each traf-
fic model clearly depend on the underlying structure of the
empirical source-destination traffic. Consider for example,
source-destination car traffic. One could conceivably build
a road system based on the hub traffic model, with onramps
from origins to & underlying hubs, and offramps to the des-
tinations. This could capture a highway traffic model dis-
tribution with % cities, and highway traffic between them.

However, the added complexity of the hub model comes at
the significant cost of building non-sparse onramps or of-
framps. In the extreme limit, one could build roads between
all origins and destinations with empirical traffic counts.
The benefit of the highway model is in the aggregation of
traffic flow along an underlying highway infrastructure. An
important consideration in comparing the models should be
sparseness of the resulting traffic model. There will in gen-
eral be domain specific sparseness related cost functions to
consider.

Hub models with the same probabilistic structure as
PLSA/NMF have been applied in the information retrieval
setting to decompose document-word matrices [7][8] and
document-citation matrices [15]. In those settings, pLSA
does not provide a probabilistic generative model, and
is not able to cleanly assign predictive probabilities to
new documents. Latent Dirichlet Allocation [16] im-
proves on pLSA by providing a proper generative model.
In the source-destination traffic setting we consider, the
sources/destinations constitute a fixed set, and the traffic
models properly defines probabilities for new traffic be-
tween the sources and destinations. The traffic models are
properly defined probabilistic models of source destination
traffic. Over-fitting however, can be a problem. Specifically,
if traffic from a source to a destination is not observed in
the test set, but appears in the training set, the traffic models
may assign zero probability to the test set likelihood. One
can use smoothing or incorporate priors over the multino-
mial parameters.

In summary, the highway model extracts out communi-
ties and relational information in the form of highway traf-
fic between the communities. It is related to spectral clus-
tering algorithms where the interest is in finding communi-
ties of nodes with minimal traffic between the communities
[9][10]. The highway traffic model extends the framework
of minimizing traffic flow between communities and pro-
vides a low rank highway based approximation to the em-
pirical source-destination traffic. In the relational data re-
search field, models have been investigated in the context
of binary link detection [17], binary relational modeling
[18], and in a supervised learning context for link predic-
tion. [19]. We are pursuing extensions of the highway traf-
fic model to address the selection of the number of highway
entrances/exits, as well as traffic models with highways and
freeways. The highway model can also be extended from
an unsupervised to a semi-supervised setting with some ob-
servations of highway and onramp/offramp traffic counts.
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