
Intelligent Computation for Association Rule Mining

Hong-Cheu Liu
School of Economics and Information Systems

University of Wollongong
Wollongong, NSW 2522, Australia

hongcheu@uow.edu.au

John Zeleznikow
School of Information Systems

Victoria University
Melbourne, Vic. 8001 Australia

John.Zeleznikow@vu.edu.au

Abstract

Although there have been several encouraging attempts
at developing SQL-based methods for data mining, simplic-
ity and efficiency still remain significant impediments for
further development. In this paper, we develop a fixpoint
operator for computing frequent itemsets and demonstrate
three query paradigm solutions for association rule min-
ing that use the idea of least fixpoint computation. We con-
sider the generate-and-test and the frequent-pattern growth
approaches and propose an novel method to represent a
frequent-pattern tree in an object-relational table and ex-
ploit a new join operator developed in the paper. The results
of our research provide theoretical foundation for intelli-
gent computation of association rules and could be useful
for data mining query language design in the development
of next generation of database management systems.

1 Introduction

Knowledge discovery from large databases has gained
popularity and its importance is well recognized. Most ef-
forts have focused on developing novel algorithms and data
structures to aid efficient computation of such rules. Much
work has also been performed on data cleaning, preparation
and transformation. While research into such procedural
computation of association rules has been extensive, little
object-relational technology has yet been significantly ex-
ploited in data mining even though data is often stored in
(object)-relational databases.

Several encouraging attempts at developing methods for
mining object-relational data have been proposed. In prin-
ciple, we can express and implement association rule min-
ing in conventional SQL language (transaction databases)
or XQuery (XML data). This approach was examined by
[4, 8], for instance. However, the resulting SQL (XQuery)
code is less than intuitive, unnecessarily long and compli-
cated. There has no relational optimization yet been ex-

ploited in their proposals. It was pointed out in the litera-
ture that current SQL systems are unable to compete with
ad-hoc file processing algorithms in general purpose data
mining systems such as the well known Apriori algorithm
and its variants [7]. However most data is stored in (object-)
relational database systems, it is meaningful to investigate
intelligent computational methods for association rule min-
ing by exploiting object-relational technology.

The integration of data mining functionality with
database management systems is an essential component of
advanced data retrieval and analysis applications. The main
idea is to combine relational query languages with data min-
ing primitives in an overall framework capable of specifying
data mining tasks as object-relational queries. Logic-based
database languages provide a flexible model of represent-
ing, maintaining and utilizing high-level knowledge. This
motivates us to study a logic-based framework and develop
relational operators (fixpoint and fp-join operators) for in-
telligent data analysis.

In this paper, we focus on computational methods from
three paradigms that have been developed for querying rela-
tional databases. We demonstrate three paradigm solutions
for association rule mining that use the idea of least fixpoint
computation. We consider the generate-and-test and the
frequent-pattern growth approaches and propose an novel
method to represent a frequent-pattern tree in an object-
relational table and exploit a new join operator developed
in the paper. The results of our research provide theoretical
foundation for intelligent computation of association rules
and could be useful for the development of next generation
of database management systems with data mining func-
tionality.

The presentation of the paper is organized as follows. We
briefly review the basic concepts in Section 2. In Section
3 we present three paradigms for data mining query lan-
guages. We develop a fixpoint operator for computing fre-
quent itemsets and show how it is expressed in the three dif-
ferent paradigms. We then present datalog implementation
for frequent itemset mining by using the frequent-pattern

growth approach in Section 4. Finally we give a conclusion
in Section 5.

2 Basic Concepts

In this section, we briefly review the basic concepts of
association rule mining and data mining query languages.

2.1 Association Rules

While many forms of rule inductions are interesting, as-
sociation rules were found to be appealing because of their
simplicity and intuitiveness. In this paradigm, the rule min-
ing process is divided into two distinct steps - discovering
large item setsand generating rules.

The first work on mining association rules from large
databases is the support-confidence framework established
by Agrawal et al. [1]. LetI = {i1, ...in} be a set of item
identifiers. An association rule is an implication of the form

X⇒Y, whereX,Y ⊆ I , andX∩Y = /0

Association rules are characterized by two measures. The
rule A⇒ B holds in the transaction setD with supports,
wheres is the percentage of transactions inD that contain
A∪B. This is taken to be the probability,P(A∪B). The
rule A⇒ B has confidencec in the transaction setD if c is
the percentage of transactions inD containing A that also
contain B. This is taken to be the conditional probability,
P(B | A). That is,

support(A⇒ B) = P(A∪B)

con f idence(A⇒ B) = P(B | A)

The task of mining association rules is to generate all asso-
ciation rules that satisfy two user-defined threshold values:
a minimum support and a minimum confidence.

2.2 Data Mining Query Languages

A desired feature of data mining systems is the ability
to support ad hoc and interactive data mining in order to
facilitate flexible and effective knowledge discovery. Data
mining query languages can be designed to support such a
feature [3]. In particular, declarative query language sup-
port acts an important role in the next generation of Web
database systems with data mining functionality. Query
systems should provide mechanism of obtaining, maintain-
ing, representing and utilizing high level knowledge in a
unified framework. A knowledge discovery support envi-
ronment should be an integrated mining and querying sys-
tem capable of representing domain knowledge, extracting
useful knowledge and organizing in ontologies [2].

We will introduce three query language paradigms for
association rule mining in the next section. The first
paradigm is logic based. It is a variant of the complex
value calculus. The second paradigm provides basic alge-
braic operations for manipulating (object-)relations to con-
struct mining results to queries. It uses an aggregation oper-
ator in addition to the basic relational operations. The third
paradigm stems from logic programming. We use Datalogcv

with negation as a representative.
Designing a comprehensive data mining language is

challenging because data mining covers a wide spectrum of
tasks and each task has different requirements. In this pa-
per we provide some theoretical foundations for relational
computation of association rule mining.

3 Relational Computation for Association
Rules

As most data is stored in (object-)relational databases,
we can exploit object-relational technology to manage and
mine interesting information from those data. In this sec-
tion, we investigate relational computation methods and
demonstrate three query paradigm solutions for association
rule mining that use the idea of least fixpoint computation.
The three query language paradigms, namely calculus, alge-
bra and deductive rules, continue to play an important role
in query languages of the next generation database systems.

3.1 Calculus+Fixpoint

We provide a noninflationary extension of the complex
value calculus with recursion and aggregate operation. We
define a fixpoint operator which allows the iteration of cal-
culus formulas up to a fixpoint. In effect, this allows us to
define frequent itemsets inductively using calculus formu-
las.

The motivation of defining a fixpoint operator in a data
mining query language is to provide an alternative way to
achieve association rule mining and to assist the develop-
ment of a logic database language with data mining mech-
anisms for modeling extraction, representation and utiliza-
tion of both induced and deduced knowledge.

Definition 1 LetSk(V) denote the set of all degree-k subset
of V . For any two sets S and s, s is said to be a degree-k sub-
set of S if s∈ P (S) and |s| = k. P (S) denotes the powerset
of S.

The noninflationary version of the fixpoint operator is pre-
sented as follows. Consider association rule mining from
object-relational data. Suppose that raw data is first pre-
processed to transform to an object-relational database. Let
D = (x,y) be a nested table in the mapped object-relational

database. For example,x = items, y = count. Itemsis a set
valued attribute. LetSk

x(D) = {t | ∃u ∈ D,v = Sk(u[x]),t =
(v,y)}. We develop a fixpoint operator for computing the
frequent itemsets as follows. The relationJn holding the fre-
quent itemsets with support value greater than a thresholdδ
can be defined inductively using the following formulas:

ϕ(T,k) = σy≥δ(xGsum(y)S
k
x (D)(x,y)) −→ T(x,y),

if k = 1

ϕ(T,k) = T(x,y)∨σy≥δ(xGsum(y)(∃u,v{T(u,v)

∧(Sk
x (D)(x,y))∧u⊂ x−→ T(x,y)})), if k≥ 1

as follows:J0 = /0; Jn = ϕ(Jn−1,n),n > 0. WhereG is the
aggregation operator. Hereϕ(Jn−1,n) denotes the result of
evaluatingϕ(T,k) when the value of T isJn−1 and the value
of k is n. Note that, for each input databaseD, and the
support thresholdδ, the sequence{Jn}n≥0 converges. That
is, there exists somek for which Jk = Jj for every j > k.
Clearly,Jk holds the set of frequent itemsets ofD. Thus the
frequent itemsets can be defined as the limit of the forgo-
ing sequence. Note thatJk = ϕ(Jk,k+ 1), so Jk is also a
fixpoint of ϕ(T,k). The relationJk thereby obtained is de-
noted byµT(ϕ(T,k)). By definition,µT is an operator that
produces a new nested relation (the fixpointJk) when ap-
plied toϕ(T,k).

In [6], the author proposed a fixpoint operator for com-
puting frequent itemsets which is different from our defini-
tion. The least fixpoint operator of [6] is based on bottom-
up computation approach which starts from the ’distance-1’
subsets of the input database. We believe that our fixpoint
operator is more appropriate as it can take advantage of anti-
monotonicity property to do cross examination and make
the computation method more efficient.

3.2 Algebra+While

Relational algebra is essentially a procedural language.
The extension of the complex value algebra with recursion
and incorporated with awhile construct is consistent with
the imperative paradigm and can express association rule
mining queries.

We expect to have a functionsub available in the next
generation database systems that takes three arguments, two
sets of values (Items)V1 andV2, and a natural numberk such
that |V2| ≤ k≤ |V1|, and returns the degree-k subsets of the
setV1 that includeV2. We define a new join operator called
sub-join.

Definition 2 Let us consider two relations with the same
schemes{Item,Count}. r 1

sub,k s = {t | ∃u ∈ r,v ∈ s
such that u[Item] ⊆ v[Item] ∧∃t

′
such that(u[Item] ⊆ t

′
⊆

v[Item]∧|t
′
|= k), t =< t

′
,v[Count] >}

Here, we treat the result ofr 1
sub,k sas multiset meaning, as

it may produce two tuples oft
′
with the same support value.

In the mining process we need to add all support values for
each item.

Example 1 Given two relations r and s, the result of
r 1

sub,2 s is shown as follows.

r
Items Support
{a} 0
{b, f} 0
{d, f} 0

s
Items Support
{a,b,c} 3
{b,c, f} 4
{d,e} 2

r 1
sub,2 s

Items Support
{a,b} 3
{a,c} 3
{b, f} 4

Figure 1. An example of sub-join

Given a databaseD = (Item,Support) and support thresh-
old δ, the following fixpoint algorithm computes frequent
itemset ofD.
Algorithm fixpoint
Input: An object-relational databaseD and support thresh-
old δ
Output: The frequent itemsets ofD

begin
k := 1
T := σSupport≥δ(ItemGsum(Support)S

k
Item(D)))

P := /0
L := T
While (L−P) 6= /0 do
P := L
k := k+1
T := σSupport≥δ(ItemGsum(Support)(T 1

sub,k (D))
L := L∪T
endwhile

end

Example 2 Let’s look at an example of fixpoint algorithm,
based on the transaction table, D, of figure 2.

The figure 3 shows the computation steps of thefixpoint
algorithm. It is easy to show that the above algorithm com-
putes the fixpoint defined in the Calculus +µ language and
hence the result below follows.

Theorem 1 For any object-relational database and mini-
mum thresholdδ, the fixpoint defined in the association rule
mining expressed in Calculus + µ and the fixpoint algorithm
compute the identical frequent itemsets.

D
TID item IDs
T1 {i1, i2, i5}
T2 {i2, i4}
T3 {i2, i3}
T4 {i1, i2, i4}
T5 {i1, i3}
T6 {i2, i3}
T7 {i1, i3}
T8 {i1, i2, i3, i5}
T9 {i1, i2, i3}

Figure 2. Transaction data

step1
Items Support

i1 6
i2 7
i3 6
i4 2
i5 2

step2
Items Support

i1 6
i2 7
i3 6
i4 2
i5 2

{i1, i2} 4
{i1, i5} 2
{i1, i3} 4
{i2, i5} 2
{i2, i4} 2
{i2, i3} 4

step3
Items Support

i1 6
i2 7
i3 6
i4 2
i5 2

{i1, i2} 4
{i1, i5} 2
{i1, i3} 4
{i2, i5} 2
{i2, i4} 2
{i2, i3} 4
{i1, i2, i5} 2
{i1, i2, i3} 2

Figure 3. Computation steps of fixpoint algo-
rithm

Proof Sketch. The fixpoint operator in Calculus defines
frequent itemsets inductively by using the basic definitions
of the used-defined threshold and the aggregation operator.
The fixpoint algorithm computes the frequent itemsets by

TABLE Corporation = (Doc-id, Sub-doc)
TABLE Products = (Product-id, prod-name, Warranty,

Composition, Distributor)
Warranty = (premium, country, w-period)
Composition = (Composition-id, c-name,

Component)
Component = (part, quantity)
Distributor = (company, fee)

TABLE Parts = (Part-id, part-name, weight, Warranty,
Source)

Warranty = (country, w-period)
Source = (company, cost)

Figure 4. Three mapped nested relational
schemes.

performing the sub-join operation. This yields the result
which is equivalent to the fixpoint defined in the Calculus.2

Consider the object-relational database shown in fig-
ure 4. An association rule describes regularities of com-
ponent parts contained in products. For example, the rule
{p1, p2, p3}⇒ {p4} states that if a product containing parts
{p1, p2 p3} is likely to also contain part{p4}. We can ap-
ply the abovefixpoint Algorithm to find frequent patterns
and then generate such association rules.

3.3 Datalogcv,¬

In this section, we present an operational semantics for
association rule mining queries expressed in Datalogcv,¬

program from fixpoint theory. The formal syntax and se-
mantics of Datalogcv,¬ are straightforward extensions of
those for Datalogcv. A Datalogcv,¬ rule is an expression
of the formA← L1, ...,Ln, whereA is an atom and each
Li is either an positive atomBi or a negated atom¬Bi . A
Datalogcv,¬ program is a nonempty finite set of Datalogcv,¬

rules.
The challenge is to develop declarative means of com-

puting association rules so that we can mine interesting in-
formation from object-relational databases. It is difficult to
cast inherent procedurality into the declarativity of logic-
based systems.

We present a Datalog program as shown in the figure 5
which can compute the frequent itemsets. The rule 1 gen-
erates the set of1-itemsetfrom the input frequency table.
The rule 2 selects the frequent1-itemsetwhose support is
greater than the threshold. Let us assume that we have a
sub-joinrelation, wheresub join(J, I ,k,x) is interpreted as
’x is obtained by applyingsub function to two operandsJ
andI , i.e.,x = J 1

sub,k I . The rule 3 performs thesub-join
operation on the tablelarge generated in the rule 2 and the

1. cand(J,C) ← f req(I ,C), J⊂ I , |J|= 1
2. large(J,C) ← cand(J,C), C > δ
3. T(genid(),x,C2) ← large(J,C1), f req(I ,C2),

k = max(|J|)+1,sub join(J, I ,k,x)
4. cand(x,sum< C >)← T(id,x,C)
5. large(x,y) ← cand(x,y),y > δ

Figure 5. Deductive association rule mining
program

input frequency table.
Datalog system is of set semantics. In the above pro-

gram, we treatT facts as multisets, i.e., bag semantics, by
using system generatedid to simulate multiset operation.
The rule 4 counts the sum total of all supports correspond-
ing to each candidate item set generated in tableT so far.
Finally, rule 5 computes the frequent itemsets by selecting
the itemsets in the candidate set whose support is greater
than the threshold. Suppose thatn is the maximum car-
dinality of the itemsets in the frequency table. The above
program is bounded byn.

We now show the program that definessub-join:

to join(J, I) ← A(J), B(I), J⊂ I
sub join(J, I ,k,x)← to join(J, I), J⊂ I , x⊂ I , |x|= k

Once the frequent itemset table has been generated, we
can easily apply the following rule, which was proposed in
[5], to produce all association rules.

rules(I ,J− I ,support,con f)← large(I ,CI), large(J,CJ),
support= CJ,
con f = CJ/CI , con f > δ

In the final step, the above generated rules will be repre-
sented in the output object-relational table.

4 The frequent-pattern growth approach

The frequent-pattern growth mining process consists of
two steps [3]:

• Construct a compact frequent-pattern tree which re-
tains the itemset association information in less space.

• Mine the FP-tree to find all frequent patterns recur-
sively.

When the database is large, it is unrealistic to construct a
main memory-based FP-tree. An interesting alternative is
to store a FP-tree in an object-relational table. See Figure6.
The mining of the FP-tree proceeds as follows. Start from
each frequent 1-itemset (as an initial suffix pattern), perform

FP
part count pattern-base

pattern count
p5 2 < p2, p1 > 1

< p2, p1, p3 > 1
p4 2 < p2, p1 > 1

< p2 > 1
p3 6
p1 6
p2 7

Figure 6. An object-relational table represent-
ing FP-tree

mining by applying a special kind of join, called fp-join
which is defined below, on the pattern base attribute in the
FP-tree table.

Definition 3 Given two arrays a=< a1, ...,am > and b=<
b1, ...,bn >, where m≤ n, the join of two arrays is defined
as a1 b =

• < a1, ...,a j >, if (a1 = b1,...,aj = b j) and aj+1 6= b j+1

where j< m; or

• < a1, ...,am >, if a1 = b1,...,am = bm

For example, given two arrays< i2, i1, i5 > and< i2, i1 >,
then< i2, i1, i5 > 1 < i2, i1 > = < i2, i1 >. Then we define
fp-join for the conditional pattern base attribute in the FP-
tree table.

Definition 4 Given two relations u1 and u2 with schemas
{< pattern: array,count : integer>}, the fp-join of two
relations is defined as follows:

u1 1
f p u2 = {t | ∃t1 ∈ u1 and t2 ∈ u2 such that

(t[pattern] = t1[pattern] 1 t2[pattern]
∧t[count] = t1[count]+ t2[count])
∨(t ∈ u1∧ (∀t

′
∈ u2,t[pattern] 1 t

′
[pattern] = /0)

∨(t ∈ u2∧ (∀t
′
∈ u1,t[pattern] 1 t

′
[pattern] = /0)

Example 3 Suppose there is a relation R= {<< i2, i1 >
,2>,<< i2 >,2>,<< i1 >,2>}. R1

f p R= {<< i2, i1 >
,2 >,<< i2 >,4 >,<< i1 >,2 >}

We present a Datalog program as shown in the figure 7
which can compute the frequent itemsets by using the FP-
growth approach. Similar to the candidate generate-and-test
approach, the rules 1 and 2 produce the frequent 1-itemset
L1. The rule 3 produces the prefix patterns for each item
(i.e., part). The rule 4 counts the number of patterns for
each prefix. The nest operator is applied to create nested
schemaFP-base(J,C, pattern-base< K,PC >) in rule 5.

1. f req(parts,count< company>)
← D(company, parts)

2. L1(J,C)
← f req(I ,C), J⊂ I , |J|= 1,C > δ

3. FP-pattern(J,C,T,K)
← L1(J,C), D(T, I), J⊂ I , K = I −J

4. FP-tree(J,C,K,count< T >)
← FP-pattern(J,C,T,K)

5. FP-base(J,C, pattern-base< K,PC>
← FP-tree(J,C,K,PC)

6. Cand-FP(J,C,CondFP< base,count>)
← FP-base(J,C,B), B 1

f p B = CondFP
7. FP(I ,PC)
←Cand-FP(J,C,CondFP< K,C >),
Powerset(CondFP.K)∪J = I , PC= C, C > δ

8. FP(I ,min(PC))
← FP(I ,PC)

Figure 7. The FP-growth approach to frequent
pattern mining

The rule 6 applies the fp-join operator defined before to cre-
ate the conditional pattern base, calledCondFP. Finally,
rules 7 and 8 form the frequent patterns by concatenating
with the suffix pattern. In the program we usePowerset
function which can be implemented in a sub-program and
an aggregate functionmin to select the minimum support of
the prefix patterns.

5 Conclusion

We have investigated data mining query languages from
three paradigms that have been developed for querying rela-
tional databases. Three paradigm solutions for association
rule mining that use the idea of least fixpoint computation
have been demonstrated. In this paper, we have also shown
that object-relational data can be mined in a declarative way
so that extensive optimization task can be done in the un-
derlying object-relational database engine. The main dis-
advantage of the deductive approach to data mining query
languages is the concern of its performance. However, op-
timization techniques from deductive databases can be uti-
lized and the most computationally intensive operations can
be modularized. We have presented our preliminary ideas
first and comprehensive query optimization and experimen-
tal work will be carried out at a later stage. The results
of our research provide theoretical foundations for intelli-
gent computation of association rules and could be useful
for data mining query language design in the next genera-
tion of database systems.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association
rules between sets of items in large databases. InProceedings
of ACM SIGMOD conference on management of data, pages
207–216, 1993.

[2] F. Giannotti, G. Manco, and F. Turini. Towards a logic query
language for data mining.Lecture Notes in Artificial Intelli-
gence, 2682:76–94, 2004.

[3] J. Han. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers, 2000.

[4] H. M. Jamil. Ad hoc association rule mining as sql3 queries.
In Proceedings of international conference on data mining,
pages 609–612, 2001.

[5] H. M. Jamil. Mining first-order knowledge bases for associa-
tion rules. InProceedings of 13th IEEE International confer-
ence on tools with Artificial intelligence, 2001.

[6] H. M. Jamil. On the equivalence of top-down and bottom-up
data mining in relational databases. InProceedings of the 4th
international conference on data warehousing and knowledge
discovery, pages 41–50, 2001.

[7] D. Tsur, J. D. Ullman, S. Abiteboul, C. Clifton, R. Motwani,
S. Nestorov, and A. Rosenthal. Query flocks: A generaliza-
tion of association-rule mining. InProceedings of ACM SIG-
MOD, pages 1–12, 1998.

[8] J. W.W.Wan and G. Dobbie. Mining association rule from xml
data using xquery. InProceedings of the Fifth International
Workshop on Web Information and Data Management, 2003.

