An Adaptive Intrusion Detection System using a Data Mining Approach

Sujaa Rani Mohan, E.K. Park, Yijie Han
University of Missouri, Kansas City
{srmhv7 | ekpark | hanyij }@umkc.edu

Abstract

Weak data dependencies in large databases coupled
with poorly written web based applications are a major
cause for malicious transactions. The problem of security
becomes especially acute when access roles are changed
among users. Also the poorly maintained data base caches
are a cause for added security leaks. We propose an
adaptive Intrusion detection system to keep track of the
varying data dependencies as and when the definitions for
various access roles are changed. We use an association
rule based approach to track all relevant data dependency
rule sets for different access roles using a hierarchical
structure. We then identify malicious transactions from the
transaction logs in the database using the data dependency
rule sets. These rule sets are continuously updated and
stored in a repository. Our approach is shown to reduce
data access bottlenecks, and ensures minimal manual
intervention for maintaining a secure database.

1. Introduction.

Securing important data from malicious users has been
along time concern for many both in the industry as well
as in research. Nowadays with web applications used to
access large databases over a network the need for
Intrusion Detection has become a dire necessity. When a
Database is first designed, it is designed and architected
based on initial requirements obtained from the users of the
proposed database. There are few security leaks and the
web application is well written for the predicted database
transactions. Usually a Database system so designed will
not be expected to be very susceptible to intrusion. It is a
well known fact that no software can be made completely
bug free. Loop holes are usually over looked due to poor
testing or oversight as part of the database designer. Also
the database may require some re-definitions of the
database access roles based on the changes in the user’s
tasks. New tables and views may have to be added or old

ones removed which causes changes in the data
dependencies among tables. Such changes are generaly
invoked to make the database more feasible and this
sometimes drastically affects the security level. A once
secure database now becomes a perfect haven for
malicious attacks. This is the core problem that we are
trying to solve in our paper.

A database which is a part of a network or a host is
usually monitored by the database administrator. He
defines the various access roles for the users. These users
hence have restricted access. With a number of users
accessing the database with usually common queries there
is a high bottleneck that arises. To prevent slow access
speeds, the result sets of some queries are cached in a
database cache. This reduces the access time but also opens
the door for malicious unauthorized accesses. Usually large
enterprises have a lot of sensitive data and hence in most
cases such caches are poorly used. Malicious activity also
arises when access roles are changed or the permissions for
a user are changed. Another way to intrude into the
database is by performing an unauthorized sequence of
transactions. For example, a delete operation on a data item
cannot occur without reading the item first.

Intrusion Detection Systems(IDS) have been
developed to identify any unauthorized attempts or
successful attacks on any type of monitored data or
resources available as part of a network or host system.
Most IDSs detect such malicious activity either at the
transaction level or at the operating system(OS) level [1]. It
is aso shown that transaction level attacks take care of
most OS level attacks [2], [3]. But there are many attacks
which occur internal to the network such as by a user with
lesser privileges accessing data that requires more access
rights. Such attacks can be identified by analyzing the
transaction logs. A transaction log contains all the
transactions made on a database. More on Transaction logs
are explained in later sections. By analyzing these logs
most malicious activity can be identified. In a typica
database accessed over a network there may be as many as
one million transactions a day and any kind of
computational analysis will prove to be costly and tedious.
There have been a number of approaches to reduce the

time using different approaches, the most recent effective
strategy being data mining [4].

Data mining is the analysis of data to establish
relationships and identify hidden patterns of data which
otherwise would go unnoticed. Even so existing
approaches require analysis of millions of records. Our
approach reduces the time to determine the sensitive data
patterns from changing data access roles in the database,
thereby identify any malicious activity and allow secure
database caching at the network level.

Usudly the database itself will not have security
restrictions on individual data items. Access roles define
the read/write/execute rights for each table in the database.
Users generaly query the database using transactions (or
bulk transactions) through a web API. These transactions
limit the number of valid queries that are allowed on a
database. This is very common in web applications which
use a large database over the internet. It is very easy to
break into the database by writing malicious code to run
illegal transactions and executing them on the database if
the web application is not written carefully. In [5] the
authors propose an effective means to locate and repair the
damage on-thefly for web based data intensive
applications with reasonable (database) performance
penalty.

In our approach we propose an adaptive IDS which
defines a set of data dependency rule sets based on
changing access roles which are maintained in a repository
to identify such malicious transactions. The rest of the
paper is organized as follows: Section 2 briefly discusses
the current approaches and related work in this area of
research. Section 3 outlines our concepts and assumptions
used in our approach. We describe the various phases of
our adaptive IDS in Section 4. We present an analysis of
our approach to two well known database oriented web
applications in Section 5. A brief conclusion and a
discussion on our future work of applying an adaptive IDS
to distributed databases using a multi agent framework is
given in Section 6.

2. Current and related work.

Many researchers have dwelled into the field of
database intrusion detection in databases using data
mining. In [4], the author talks about a framework for
continuously adapting the intrusion detection system for a
computer environment asit is upgraded. The paper shows a
number of data mining approaches to solve this problem
and greatly discusses the results. Intrusion Detection has
been approached using data mining by many researchers
like [6]. In [5] , a multiphase damage confinement
approach to ensure no damage is spread across the
database after the detection is done. [7]’s paper uses a data
dependency miner to identify correlations between data
items and defines read and write sets for each data item.
These rules are mined by scanning the database logs but it

does not take into consideration the fact that the data
dependency rules do not hold good for different access
roles. We show in this paper that by applying the data
dependency miner for transactions of each access role the,
data dependencies will be more reliable. Also we show
how the database transaction cache which caches
frequently queried resultsets can be used more efficiently,
by effectively preventing malicious accesses.

In [7], the authors argue that malicious writes are the
major security threats and simple approach is given to
identify malicious writes using data dependencies. The
paper does not identify illega reads. Our approach
identifies all types of illegal accesses. Data mining is
required to identify hidden data dependencies which might
cause security threats and using triggers and stored
procedures, we can only prevent expected loop holes. A
possible solution is using dynamic stored procedures to
maintain changing database data dependencies for
intrusion detection but this an inflexible approach
especialy for a database which is accessed using a web
based application.

Our approach deals with illegal transactions submitted
to the DBMS via some mechanism using a user id with
lower access rights using a web based application. Also it
will prevent those intruders who bypassed the access
control mechanism as the data dependency rule set will
dtill track the valid sequence of reads and writes required
for each transaction.

A change in the database models is inevitable and
hence the security of the DB is at stake if the IDS model
does not adapt itself to these changes. Also, adaptive
database models have been shown to detect malicious
transactions more effectively. In [4], the authors present a
number of data mining approaches and their effectiveness
for detecting malicious transactions.

3. Concepts and Assumptions

3.1. Database Schema,
privileges.

Access Roles and

A Database schema is a set of objects owned by a
user. A user automatically has all object privileges for
schema objects contained in his or her schema. A user can
grant any object privilege on any schema object he or she
owns to any other user or role. A privilege can be granted
explicitly. For example, the privilege to insert records into
table X can be explicitly granted to the user A.
Alternatively a privilege can be granted to an access role
which is a named group of privileges, and then the role can
be granted to one or more users. For example, the privilege
to insert records into a STUDENT table can be granted to
the role named ADVISOR, which in turn can be granted to
the users AdvisorB and ProfA.

In a relational Database such access roles are granted
privileges in the form of a hierarchy with higher level
access roles inheriting al privileges of lower level access
roles. Our model works on this assumption. A sample
hierarchical pattern is shown in Figurel

A< B <€CD
Figure 1

Each Access Role type is assigned a weight which
represents its level in the hierarchy. For example from
Fig.1, Cand D will be at level 1, B at level 2, and A at
level 3. In our paper we define each type of access roles
with a set of read/write permissions for each table or view.

3.2. Transaction.

A transaction consists of a sequence of reads and
writes of different data items from different tables in the
database. A transaction Tk can be denoted as < o01(dl),
02(d2), 03(d1) > where di where i = 1....nis the different
data items in the database, oi is an operation of the data
and belongs to the set of reads and writes <r,w>. The data
sequence for atransaction can be shown as Dk = {d1,d2}.
Such a transaction will exist for the read or write operation
for every dataitem in the database. i.e to perform aread or
write operation there maybe some other read or write
operation required on other data items prior to this
read/write. This is called data dependency between data
items and such validations are usually not made in by the
database. The database only checks for foreign key, and
primary key dependencies. Our data mining analyzer
analyses all transactions’ read/write Sequences and
formulates data dependency rule sets that are valid for
different access roles. From these rule sets we show in the
following sections how malicious transactions can be
identified.

3.3. Transaction logs.

Each transaction requested by a user is logged in the

transaction log table. In our approach a log entry consists

of the following fields:

i Transaction ID

ii. Ischange (has the record changed as a result of
the transaction)

iii. isDelete (has the record been del eted)

iv. isRestore (is this entry a restore point if the
record islost)

V. which data items have been changed

vi. isMalicious (is this transaction malicious)

vii. SecurityDegree (the minimum access role level
required for the user to initiate such atransaction)

viii. Userld (who initiated this transaction)

iX. AccessRole (what access roles does this user

have on the database)

In our approach, these logs show the malicious transactions
and the degree of maliciousness.

4. Our Approach.

The Apriori agorithm has become a well known
standard for identifying patterns using association rules [8].
Its main disadvantage is that, if a pattern of length n is
needed, then n passes are needed through the items. This
can become a large overhead for our current application.
[9] describes an efficient approach to perform incremental
Mining of Frequent Sequence Patterns in Web logs. The
approach we have used in this paper is a variation of the
Apriori algorithm [10] which identifies frequent rule sets
using a pattern repository in linear time [11]. The main
advantage of this approach is the ease of updating the rule
set and scaling. New frequent rule sets added to the
repository can be used immediately.

However, our problem requires rule sets which
identify all relevant patterns and not only the frequent
ones. The rule set should be complete and all dependencies
that may cause a security threat need to be identified. Also
our problem requires an algorithm that can quickly adjust
the rule sets rather than completely redefining them
depending on changing items and item sets. We use a
pattern repository similar to [11] to keep track of valid data
dependencies. Also we modify the Apriori agorithm to
reflect all relevant data dependencies.

Our approach will help build frequent rule sets by
analyzing all data dependencies for different user access
role types to identify malicious activity from database
transaction logs.

Our approach can be subdivided into the following
phases.

4.1. Phase 1.

a) Initial Database Scan: This phase involves identifying
the different tables, views, data items, primary key and
foreign key constraintsin the database.

b) Identifying Access Roles and their hierarchy: Based on
the read/write/execute rights on different views and tables
that each access role has the access roles are classified in a
hierarchy with the access role having all rights (for
example the database administrator) being at the top of the
hierarchy. For example, Administrator < Professor <
Student.

c) Let T be a universal Transaction set containing all
read/write sequences for each transaction tx where x =
1....m, the total number of all transactions for the database
based on all access role definitions. Let AR with the set of
all access roles ranging from AR1 to ARn where ARn is
the access role with al rights on the database.

d) Ordering Data items for rule set formulation: The
ordering can be performed by performing a count on the
number of times a data item occurs in all transactions in

the universal transaction set T and then numbering the data
items by the descending order of their counts. Also the
primary key and foreign key constraints of the data items
in aview or table should be taken into care while ordering
as this ordering affects the order in which data items are
selected while formulating the data dependency rule sets
for the various access roles. This order will affect the
formulation of rule sets involving data items that have
cross dependencies between tables. This phase can only be
partially automated and highly depends on the way the
database is defined. For larger databases care should be
taken not to assign cyclic dependencies between tables (for
example, a write on Item x depends on a write in Item y
and vice versa).

4.2. Phase 2.

a) We follow a reverse hierarchical order for rule set
formulation. i.e. the rule sets for the access role with the
least permission (lowest level in the hierarchy) are
identified first followed by one of its siblings at the same
level in the hierarchy as its access role definition will be
different. Once all the rule sets for the lowest level in the
hierarchy are identified, the rule sets for an access role in
the next higher level are formulated and so on. All rule sets
formulated for an access role are directly inherited by its
parent and these rule sets are no longer reformulated.
b) For each access role chosen as per the reverse
hierarchical order,
i. Let TA{} be a subset of T containing the
read/write operational sequences for all transactions for
the access role ARi. Let each transaction be denoted as
tz where z=1 to the number of transactions in TAI.
Each transaction is a sequence of reads and writes,
ordered from left to right in the order in which they
need to occur. Let DAI be the set which maintains the
counts for each unique aggregating rule set. The Access
role ARi has operation-item set Ai{} which isinitially
empty.
ii. First pass. Determine al rule sets of length 1
(Length 1 means a single operation which may be a
read or write on a dataitem). This is done by scanning
the first operation in each transaction in TAi{} from
left to right. Assign a count to the number of times each
sequence of operation occursin al TAi{} and store that
count in DAI. These rule sets are now added to Ai{}.
Pass 2 to Pass MaxLengthTransaction of TAi{} or until
bigger rule sets cannot be formed (Pass j): All
Transactions which do not contain arule set in Ai{} are
removed from TAi{}. Determine all rule sets of length
j. Repeat the same procedure asin Pass 1 and assign the
count of the number of times the operation o(di) occurs
with the existing rule set and store it in DAI.
By setting a support level we can remove infrequent
rule sets from being formed at each pass by tracking the
DA counts for each aggregating rule set, but it must be

noted that the purpose of this approach is to keep track
of all relevant rule sets as opposed to frequent rule sets
since the main aim is to identify al malicious
transactions. A sample result set aggregation for a few
passes for transactions starting with o(dl) is shown in
Tablel.
Tablel. Sample data dependency rule set formulation.

Pass Aggregating rule | DAI counts
sets Cardinality of
TAI =10
1 o(dl) 8
2 o(d1) o(d2) 8
3 o(dl) o(d2) o(d3) | 4
3 o(dl) o(d2) o(d4) |3
3 o(dl) o(d2) o(d5) |1
4 o(dl) o(d2) o(d3) | 4
o(d4)

Figure 2 shows the algorithm for the data dependency rule
set formulation. Since the total number of iterations for
both the FOR loops are less than the total number of
transactions in the database, the agorithm runs with a
predictable run time.

C) The rule sets that are in each access role’s Ai{} are
added to the rule set repository called the Data
Dependency Repository (DDR). The DDR is kept up to
date with al data dependency rule sets and heavily used to
identify all malicious transactions and effectively secure
the database cache asis explained in the following phases.
Figure 2 Algorithm for Rule Set Formulation

4.3. Phase 3

a) ldentifying malicious Database transaction from
Transaction logs: For every transaction alog entry is made
into the Transaction logs. The IDS will identify the rule set
for the transaction from the repository which will also give
the minimum hierarchy level required to initiate this
transaction. This hierarchy level shows the degree of
maliciousness (whether a level 3 user is trying to access a
database using level 5 access privileges).

b) Intrusion Trends: A performance check on the logs can
identify trends in malicious transactions and by tracing the
transactions marked malicious weak data dependencies
which may cause these security leaks can be easily
determined.

c) Securing database cache: Database caches which cache
the resultsets from frequent queries to reduce bottle necks
and database pool accesses, can now use the malicious
degree assigned to the transaction to determine whether to
cache the resultset or not. By not caching highly malicious
resultset we can help prevent security leaks due to
malicious accesses to the database cache.

1 <0

2 For each AR

3 Set Ai < {}

4 Set TAI €{ set of all transactionstzin T for
ARi}

5 Set DAI €{ set of al operationson
al dataitemsin TAi}

6 Set ruleSetLength < 1

7 While(rule sets aggregate)

8 j€0

9 For each tzin TAi

10 add each unique sequence to Ai{}
11 DAI[j] € number of times aunique

operational (read/write) sequence of length ruleSetLength
occurs in TAi’s transactions. The transactions are
scanned from left to right in that order only.

12 j€j+1

13 ruleSetLength € ruleSetLength + 1

all rule sets that apply to the Advisor and/or Student roles
will apply to the Professor role and all rights of the
Professor, Advisor and Student are inherited by the Admin.

Table 2. Access role definition for scenario 1

Course | Student | Course | Professor
View | Info Info Availability
Student r r r
Professor r/w riw riw riw
Advisor r riw r riw
Admin r/w riw riw riw

Scenario 2:

We simulated a typical Employee-Payroll Accountant-
Employer database. A sample access role definition is
shown in Table 3. The hierarchy can be shown as Admin
< Employer, Payroll Accountant, Employer.

Table 3. Access role definition for scenario 2

Figure 2. Algorithm for data dependency rule set
formulation.

4.4, Phase 4.

Updating the DDR: In this phase all changes in the
access role definitions are analyzed. (A mobile agent can
be used to collect the changes from the database(s)). Not
al rule sets need to be changed. Only that access role
whose permission changed and its parents/grandparents
need to have their rule sets updated as the other access
roles will not be affected. It must also be noted that any
change in a user’s access role will automatically come into
effect and will not affect the intrusion detection system as
the rule sets will not change. Re-running the rule set
formulation passes for every access role change is not
necessary as generaly all changes are made during
database upgrades periodicaly by the database
administrator during general maintenance. Hence re-
running the rule set formulation will not decrease the
performance of the database.

5. Analysis.

In this section we show how we have analyzed our
approach by applying it to two well known scenarios
thereby showing the effectiveness of the approach.
Scenario 1: Consider a typical Student-Course-Professor
database. A sample definition for its access roles is shown
in Table 2. The hierarchy can be represented as follows:
Admin < Professor € Advisor, Student. This means that

Employee | Employees | HR
Personal Payroll View
View table
Payroll r riw r
Accountant
Employer r r riw
Employee riw r
Admin riw riw r/w

Notice that in Scenario 2 all access role types except for
the admin are at the same level. There are not many levels
of hierarchy here and hence the algorithm took longer to
generate all dependencies. In a typical system, the time
taken to generate the initial rule sets will be the longest.
Updating the rule sets in the repository will not affect the
performance of the database by itself. It must be noted that
the robustness of the result sets in identifying malicious
transactions with changing access role definitions is the
main factor determining the efficiency of this approach.
For both scenarios: We used auto-generated log files of
10,000 random transactions from a list of valid and invalid
transactions. Once Phase 2 is completed, a list of rule sets
depicting data dependency patterns is stored in the
repository and intrusion detection begins.

We then tested the rule sets with alist of 1000 random
transactions consisting of both valid and invaid
transactions. Every transaction is marked malicious by
identifying the security degree for that transaction (The
degree specifies the minimum user access role required to
initiate that transaction) based on the access role the
pattern adheres to. We changed the access role definition
for Professors and the patterns were updated. The database
dowed down significantly when the rule sets were
reformulated every time an access role was redefined. We
changed our setup so that all access role changes were
collected over a period of time and the rule sets were

updated only when a significant change in access roles has
occurred (such that the support level for the rule sets is
below the minimum or when its efficiency in identifying
malicious transaction falls below the required level). In this
case the reformulation can be planned and made to occur
concurrently with database back ups. The transition down
time for the databases IDS can thus be kept at a minimum
when the rule set generator is rerun during off peak times
or when the database is shut down for back up. On contrary
all updates/deletes of users, user permissions did not affect
the database performance and can be done on the fly as the
rule sets are not affected by these changes.

The support level for including a rule set pattern was
set to 25% which means the pattern must be seenin at least
25% of the total number of transactions considered. By
varying the support level the security level changed
accordingly. Care should be taken to set the support level
as it directly affects the robustness of the rule sets in
identifying malicious transactions.

The processing time for the rule sets is an initial cost.
The updates do not interfere with normal database
operations and the database is made more intrusion safe
with negligible down time. Also the DDR helps in keeping
the security leaks caused by poor database cache
maintenance in check. Our data dependency rule set
algorithm has been shown reduce computation time but
since the analysis of the adaptive IDS was made on
simulated values, our proposed approach has only been
subjected to apreliminary testing. An actual deployment of
the approach is currently being performed using intelligent
agents and is discussed in the next section.

6. Conclusion and Future work

Our approach gives an efficient approach to deal with
intrusion detection in large databases. Our adaptive IDS
approach significantly reduces the computational time for
identifying and maintaining valid rule sets using
hierarchical access roles and pattern repositories. It
significantly reduces the databases vulnerability to
malicious transactions and weak data dependencies as a
result of varying access role definitions. It provides an
ability to detect malicious activity when it occurs within
existing or past users of the database without slowing the
database transactional activity.

Our approach can be deployed onto a rea time
database system in many ways. We are currently working
on deploying our approach using light weight intelligent
agents. Using light weight agents allows one to add more
functionality in the future without affecting the
performance of existing protocols.

Below are some of the agents that may be required to
perform the various tasks in our approach:

a) An agent to scan and classify the database schema and
access roles. It would take the role of a pre-processor

during the initial set up and later to pre-process the
transaction logs.

b) A mobile agent to identify changes in the access role
definitions.

¢) An agent to run the rule set formulation and update the
Pattern repository. This agent is a static agent triggered by
the mobile agent which identifies the access role definition
itself.

d) A Database monitor agent is used to monitor the
database caches.

e) All malicious transactions of all degrees can be
monitored using aintrusion detection monitor agent.

These agents can be set to run every midnight (or when
database activity islow) so that changesin the rule set will
not decrease the IDS performance.

Our approach can also be scaed to distributed
databases and mobile agents can be used to identify data
dependency patterns across databases similarly. These
agents are also light weight agents and we are currently
working on the performance results for such an approach.

7. References.

[1] Peng Liu Jiwu Jing, Pramote Luenam, Ying Wang Lunquan
Li, Supawadee Ingsriswang, “The Design and Implementation of
a Self-Healing Database System”, School of Info Sciences and
Technology Department of Information Systems, Pennsylvania
State University UMBC, University Park, PA 16802 Baltimore,
MD 21250.

[2J. McDermott and D. Goldschlag, “Towards a model of storage
jamming”, Proceedings of the IEEE Computer Security
Foundations Workshop, Kenmare, Ireland, June 1996, pp. 176-
185.

[3] Pramote Luenam, Peng Liu, “ODAM: An On-the-fly Damage
Assessment and Repair System for Commercia Database
Applications”, Dept. of Info. Systems, UMBC Baltimore, MD
21250.

[4] W. Lee, SJ Stolfo, KW Mok, “Data mining approaches for
intrusion detection”, Proceedings of the 7th USENIX Security
Symposium, 1998.

[5] P. Liu and S. Jgodia, “Multi-phase damage confinement in
database systems for intrusion tolerance”, Proceedings of the 14th
IEEE Computer Security Foundations Workshop, June 2001, pp.
191 - 205.

[6] Ashoka Savasere, Edward Omiecinski, Shamkant B. Navathe,
“An Efficient Algorithm for Mining Association Rules in Large
Databases”, Proceedings of the 21st International Conference on
Very Large Data Bases, San Francisco, CA, USA, pp. 432 — 444,
1995.

[7] Yi Hu and Brajendra Prasad, “A Data Mining approach for
Database Intrusion Detection”, ACM Symposium on Applied
Computing, 2004, x(y): 711 - 716.

[8] Rakesh Agrawal, Andreas Arning, Toni Bollinger, Manish
Mehta, John Shafer, Srikant Ramakrishnan, “The Quest Data
Mining System”, Proc. of the 2nd Int'l ACM Conference on
Knowledge Discovery in Databases and Data Mining, Portland,
Oregon, August 1996, pp. 244-249.

[9] Maged El-Sayed, Carolina Ruiz, and Elke A. Rundensteiner,
“FS-Miner: Efficient and Incrementa Mining of Frequent
Sequence Patterns in Web logs”, Proc. of the ACM WIDM 04,
Washington, DC, November 2004, pp. 12-13.

[10] Rakesh Agrawal, Srikant Ramakrishnan, “Fast Algorithms
for Mining Association Rules”, Proc. of the 20th Int'l ACM
Conference on Very Large Databases, Santiago, Chile,
September 1994, pp. 487-499.

[11] Richard Relue and Xindong Wu, “Rule generation with the
pattern repository”, Proc. of the IEEE International Conference
on Artificial Intelligence Systems, September 2002, pp. 186 —
191

