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Finding Simple Disjoint Decompositions in Frequent Itemset Data
Using Zero-suppressed BDDs

Shin-ichi Minato
Hokkaido University

minato@ist.hokudai.ac.jp

Abstract

In this paper, we propose a method of finding simple
disjoint decompositions in frequent itemset data. The tech-
niques for decomposing Boolean functions have been stud-
ied for long time in the area of logic circuit design, and
recently, there is a very efficient algorithm to find all pos-
sible simple disjoint decompositions for a given Boolean
functions based on BDDs (Binary Decision Diagrams). We
consider the data model called “sets of combinations” in-
stead of Boolean functions, and present a similar efficient
algorithm for finding all possible simple disjoint decompo-
sitions for a given set of combinations. Our method will
be useful for extracting interesting hidden structures from
the frequent itemset data on a transaction database. We
show some experimental results for conventional bench-
mark data.

1 Introduction

Manipulation of large-scale combinatorial data is one of
the fundamental technique for data mining process. In par-
ticular, frequent item set analysis is important in many tasks
that try to find interesting patterns from web documents
and databases, such as association rules, correlations, se-
quences, episodes, classifiers, and clusters. Since the intro-
duction by Agrawal et al.[1], the frequent item set and as-
sociation rule analysis have been received much attentions
from many researchers, and a number of papers have been
published about the new algorithms or improvements for
solving such mining problems[6, 8, 22].

After generating frequent itemset data, we sometimes
faced with the problem that the frequent itemsets are too
large and complicated to retrieve useful information. So, it
is an important technique for extracting some hidden struc-
tures from the frequent itemsets to make the data more un-
derstandable. Closed/maximal itemset mining[23, 20, 21]
is one of the useful method in this approach.

In this paper, we propose a new method of finding

“simple disjoint decompositions” in the frequent itemset
data. Our method extracts another aspect of hidden struc-
tures from complicated itemset data, and will be useful for
database analysis.

Our method is based on the Boolean function decom-
position technique, which is a fundamental theory of logic
circuit design. Simple disjoint decomposition is a basic and
useful concept in this theory. This decomposition gives a
single-output sub-block function whose input variable set is
disjoint from the other part. It is a special case of decompo-
sitions and not always possible for all Boolean functions. If
we find a such decomposition for a given function, it must
be a good choice for optimal design, and we may proceed to
the local optimization of each sub-block. There are so many
studies on the method of finding simple disjoint decomposi-
tions, and currently, the method[4][10][11] based on the re-
cursive algorithm using BDDs (Binary Decision Diagrams)
is remarkably fast and powerful to find all possible simple
disjoint decompositions for a given Boolean functions.

In this paper, we focus on the data model called “sets of
combinations”, instead of Boolean functions. A set of com-
binations consists of the elements each of which is a com-
bination of multiple items. This data model often appears
in many kind of combinatorial problems, and of course, it
can be used for representing frequent itemset data. A set of
combinations can be mapped into Boolean space of n in-
put variables, and efficiently manipulated by using BDDs.
In addition, we can enjoy more efficient manipulation using
“Zero-suppressed BDDs” (ZBDD)[12], which are special
type of BDDs optimized for handling sets of combinations.

As a major contribution of this paper, we present that we
can define the operation of simple disjoint decomposition
for sets of combinations, as well as for Boolean functions.
We then show that all possible simple disjoint decomposi-
tions on sets of combinations can be extracted in a method
based on ZBDDs, as well as the conventional BDD-based
functional decomposition method. Our new ZBDD-based
decomposition algorithm for sets of combinations is not
completely same as the BDD-based one for Boolean func-
tions, but they have similar recursive structures and com-
plexities. We also show the experimental results of finding
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Figure 1. Simple disjoint decomposition on
Boolean function.

all simple disjoint decompositions in the frequent itemsets
extracted from a conventional benchmark dataset.

The paper is organized as follows: First, we review the
decomposition methods for Boolean functions in Section 2.
In Section 3, we define the decomposition for sets of combi-
nations and present the algorithm for finding simple disjoint
decompositions. We then show the experimental results in
section 4, followed by conclusion.

2 Boolean Function Decomposition

At first, we review the methods of Boolean function
decomposition. If the function f can be represented as
f(X, Y ) = g(h(X), Y ), then f can be realized by the net-
work shown in Fig. 1. We call it simple disjoint decom-
position. It is called “simple” because h is a single-output
function and “disjoint” because X and Y have no common
variables. We call a trivial decomposition if X consists of
only one variable. A non-trivial simple disjoint decomposi-
tion does not always exist in a given function, but if exists,
it is considerably effective for logic optimization.

A function may have more than one simple disjoint de-
compositions. They can be nesting. For example, the func-
tion abcx + xyz has five decompositions as X = {a, b},
{b, c}, {a, c}, {a, b, c}, and{y, z}.

Multiple input logic operations (AND, OR, EXOR) may
produce a number of associative sub-decompositions. In
such cases, we handle those decompositions as one group,
and only use the full-merged form to represent the group.
On the above example, we only use {a, b, c} to represent
the group including three associative sub-decompositions
{a, b}, {b, c}, {a, c}. After merging such associative ones,
two simple disjoint decompositions never overlap each
other. The structure of simple disjoint decompositions can
be expressed by a tree graph as shown in Fig. 2. Since each
input variable appears only once as a leaf of tree, the num-
ber of branching nodes never exceeds the number of input
variables. The problem of finding simple disjoint decom-
positions is to construct such a tree structure for a given
Boolean function.

Figure 2. Tree structure of simple disjoint de-
compositions.

There are many studies on the methods of finding simple
disjoint decompositions. At first, a classical method with
a decomposition chart is presented[3][17]. In recent years,
more efficient way using a BDD-based implicit decompo-
sition chart is discussed[9][18][19]. One proposed another
approach[13] to extract all simple disjoint decompositions
based on factoring of sum-of-products expressions.

In the long history of studies on Boolean function de-
composition, the BDD-based recursive algorithm, which is
proposed by Bertacco et al. on 1997 and improved later by
Matsunaga[10][11], is now overwhelmingly effective to ex-
tract all simple disjoint decompositions for a given Boolean
functions. This algorithms is based on the following two
properties:

• If we consider NPN-equivalence and associativity, the
tree structure of simple disjoint decompositions is
canonical for a given Boolean functions.

• Basically, all simple disjoint decompositions for f can
also be found in the two cofactor functions f(x=0) and
f(x=1).

Using the two properties, the algorithm expands a given
Boolean function to the two cofactor functions and call it-
self recursively. The final results of tree structure is ob-
tained by checking common part of the results for the two
cofactor functions. Since the algorithm has a cache mech-
anism to avoid duplicated traversals for the same BDD
nodes, we can efficiently execute the procedure in a time
bounded by the BDD size (roughly square for BDD nodes).
Actually, we need only a few seconds to extract all possible
simple disjoint decompositions for a benchmark function
with ten thousands of BDD nodes and dozens of input vari-
ables. This decomposition method is effectively used for
VLSI logic synthesis and technology mapping[16].

4 ICDM 2005 Workshop on Computational Intelligence in Data Mining



Figure 3. Correspondence of Boolean func-
tions and Sets of combinations.

3 Decomposition for Sets of Combinations

In this section, we discuss simple disjoint decomposi-
tion for sets of combinations, and show a method of finding
those decompositions.

3.1 Sets of combinations and Boolean
functions

A set of combinations consists of the elements each of
which is a combination of a number of items. There are 2n

combinations chosen from n items, so we have 22n

varia-
tions of sets of combinations. For example, for a domain of
five items a, b, c, d, and e, we can show examples of sets of
combinations as:
{ab, e}, {abc, cde, bd, acde, e}, {1, cd}, ∅. Here “1” de-
notes a combination of null items, and “∅” means an empty
set. Sets of combinations are one of the basic data struc-
ture for handling combinatorial problems. They often ap-
pear in real-life problems, such as combinations of switch-
ing devices, sets of faults, paths in the networks, etc., and
of course, it can be used for representing frequent itemset
data.

A set of combinations can be mapped into Boolean space
of n input variables. For example, Fig. 3 shows a truth ta-
ble of Boolean function (ab + ac), but also represents a set
of combinations {ab, abc, bc, c}. Such Boolean functions
are called characteristic functions for the sets of combina-
tions. Using BDD manipulation for characteristic functions,
we can implicitly represent and manipulate large-scale sets
of combinations. In addition, we can enjoy more efficient
manipulation using “Zero-suppressed BDDs” (ZBDD)[12],
which are special type of BDDs optimized for handling sets
of combinations.

ZBDDs are based on the reduction rule different from
one used in ordinary BDDs. As illustrated in Fig. 4(a), the
ordinary reduction rule deletes the nodes whose two edges

0

0

x
1

Jump

f f

(a) Ordinary BDD. (b) ZBDD.

Figure 4. Different reduction rules for BDD
and ZBDDs.

point to the same node. However, in ZBDDs, we do not
delete such nodes but delete another type of nodes whose
1-edge directly points to the 0-terminal node, as shown in
Fig. 4(b).

In ZBDDs, a 0-edge points to the subset (cofactor) of
combinations not including the decision variable x, and a
1-edges points to the subset (cofactor) of combinations in-
cluding x. If the 1-edge directly points to the 0-terminal
node, it means that the item x never appear in the set of
combinations. Zero-suppressed reduction rule automati-
cally deletes such a node with respect to the irrelevant item
x, and thus ZBDDs are more compactly represent sets of
combinations than using ordinary BDDs.

The detailed techniques of ZBDD manipulation are de-
scribed in the articles[12][14]. A typical ZBDD package
supports cofactoring operations to traverse 0-edge or 1-
edge, and binary operations between two sets of combina-
tions, such as union, intersection, and difference. the com-
putation time for each operation is almost linear to the num-
ber of ZBDD nodes related to the operation.

3.2 Simple disjoint decompositions on sets
of combinations

In this paper, we propose the definition of “simple dis-
joint decomposition on sets of combinations”, as a similar
concept as one for Boolean functions. As shown in Fig. 1
again, if a given sets of combination f can be decomposed
as f(X, Y ) = g(h(X), Y ), and X and Y has no common
items, we then call it a simple disjoint decomposition. Here
we explain the meaning of substitution operation on the set
of combinations. At first, we consider the set of combina-
tion g(s, Y ). Let us extract all combinations including s (a
cofactor of g w.r.t s), and then replace s with any one com-
bination in h(X). The result of substitution g(h(X), Y ) is
the set of all possible combinations obtained by the replace-
ments. Notice that the combinations irrelevant to s are left
as is. If the substitution result exactly equals to f(X, Y ), it
is a decomposition on f .

For instance, we consider the two sets of combinations:

ICDM 2005 Workshop on Computational Intelligence in Data Mining 5



Figure 5. Tree structure of decompositions
on sets of combinations.

g(c, d, e) = {cd, cde, de, e} and h(a, b) = {a, ab}.
When we substitute h(a, b) for c, then

g(h(a, b), d, e) = {ad, abd, ade, abde, de, e}.
Namely, f(a, b, d, e) = {ad, abd, ade, abde, de, e} has a
simple disjoint decomposition as g(h(a, b), d, e).

A set of combinations has one-to-one mapping to a
Boolean function, however, the simple disjoint decompo-
sitions for the two data models do not have such direct re-
lation. Although simple disjoint decomposition on sets of
combinations is a similar concept as one for Boolean func-
tions, we have to develop another decomposition algorithm
considering particular properties on sets of combinations.

Similarly to the case for Boolean functions, a set of
combinations may have more than one simple disjoint
decompositions. For example, the set of combinations
{abcx, abcy, abcz, xy, xz} has five decompositions as X =
{a, b}, {b, c}, {a, c}, {a, b, c}, and {y, z}. They may have
a nested structure, and can be represented by a tree graph as
shown in Fig. 5.

Contrary to the case for Boolean functions, sets of com-
binations do not have symmetric NOT operation (uses dif-
ference operation instead of NOT), there are no equiv-
alences on input/output polarity. Only input permuta-
tion should be considered. In Matsunaga’s decomposition
algorithm[11] on Boolean functions uses only OR and NOT
instead of AND operation to keep canonical forms, how-
ever, in the case for sets of combinations, AND (product)
operation and OR (union) operation do not have dual rela-
tion, so we should treat them individually. We do not have
to consider XOR operation on sets of combinations. Fi-
nally we found two kind of binary operations: AND (prod-
uct) and OR (union), which may produce associative sub-
decompositions on sets of combinations. As well as for
Boolean functions, we handle those sub-decompositions as
one group, and only use the full-merged form to represent
the group.

We need one more special consideration when the set
of combinations includes “1” (the element of null combina-
tion). For example, let us consider f(a, b, c) = {ab, c, 1}. If

we choose h = {ab}, we can find simple disjoint decompo-
sition as g(h, c) = {h, c, 1}. However, we may choose h =
{ab, 1} and then g(h, c) = {h, c} or g(h, c) = {h, c, 1}
are possible. Consequently, the decomposition structure
may not be unique when the set of combinations includes
“1”. In such cases, we need additional rule to keep the
decomposition trees canonical. Basically, we may put a
restriction that h(X) does not include “1”, namely, only
the parent set g(s, Y ) can have “1”. This rule is working
well except for AND (product) operation. Let us consider
f = {abc, ac}. It can be decomposed as {ab, b} × {c},
{a} × {bc, c}, {ac} × {b, 1}, and {a} × {b, 1} × {c}. This
example shows that AND (product) operation has the asso-
ciative property no matter how “1” is included or not, so we
must decompose by a set with “1” if it is possible. Fortu-
nately, we can see that if f is AND-decomposable by h with
“1”, then f is not decomposable by h without “1”. On the
other hand, if f is AND-decomposable by h without “1”,
then f is not decomposable by h with “1”. This means that
we can keep the decomposition tree unique.

3.3 ZBDD-based algorithm for finding
simple disjoint decompositions

In the following discussion, we use “·” for AND (prod-
uct) operator, and “+” for OR (union) operator.

If a given sets of combinations F (X, Y ) contains a sim-
ple disjoint decomposition with P (X), it can be written as:

F (X, Y ) = P (X) ·Q(Y ) + R(Y ).
Here we choose an item v used in F , and compute the two
cofactors F0, F1. (Namely, F = v · F1 + F0.)
Since v must be included in either of X or Y , the following
two cases are considered:

• In case of v ∈ X : (Let X ′ = X − v.)
F (X, Y ) = P (X) ·Q(Y ) + R(Y )

= {v · P1(X ′) + P0(X ′)} ·Q(Y ) + R(Y )
= v · {P1(X ′) ·Q(Y )}+{P0(X ′) ·Q(Y )+R(Y )}

Thus,
F1(X ′, Y ) = P1(X ′) ·Q(Y ),
F0(X ′, Y ) = P0(X ′) ·Q(Y ) + R(Y ).

• In case of v ∈ Y : (Let Y ′ = Y − v.)
F (X, Y ) = P (X) ·Q(Y ) + R(Y )

= P (X) · {v ·Q1(X ′) + Q0(X ′)}
+{v · R1(X ′) + R0(X ′)}

= v · {P (X) ·Q1(Y ′) + R1(Y ′)}
+{P (X) ·Q0(Y ′) + R0(Y ′)}

Thus,
F1(X, Y ′) = P (X) ·Q1(Y ′) + R1(Y ′),
F0(X, Y ′) = P (X) ·Q0(Y ′) + R0(Y ′).

In any case, if a given sets of combination F has sim-
ple disjoint decompositions, they can be found by checking
the common set of decompositions on the cofactors F0 and

6 ICDM 2005 Workshop on Computational Intelligence in Data Mining



Decomp(F )
{

if (F = 0) return 0 ;
if (F = 1) return 1 ;
H ← Cache(F ) ;
if (H exists) return H ;
v ← F.top ; /* Top item in F */
(F0, F1)← (Cofactors of F w.r.t v) ;
H0 ←Decomp(F0) ;
H1 ←Decomp(F1) ;
H ←Merge(v, H0, H1) ;

/* Make H from common part of H0, H1 */
Cache(F )← H ;
return H ;

}

Figure 6. Sketch of the algorithm.

F1. Similarly to BDD-based recursive method of Boolean
function decomposition, there are some cases that a part of
factors, such as P0(X ′) and Q0(Y ′), may be reduced to a
constant “1” or “∅”, so we need more detailed classification
in actual implementation of the algorithm.

The above discussion shows that we can generate a tree
structure of representing all possible simple disjoint decom-
positions on a set of combinations using a ZBDD-based re-
cursive algorithm, which is a similar manner to the BDD-
based method[4][10][11] for Boolean function decomposi-
tion. The sketch of algorithm is shown in Fig.6. The com-
putation time can be roughly square to the ZBDD size as
well as the previous method, by using a cache mechanism
to avoid duplicated traversals for the same ZBDD nodes.

4 Experimental Results

We implemented a program for finding all simple dis-
joint decompositions on sets of combinations. The program
is based on our own ZBDD package, and additional 1,600
lines of C++ code for the decomposition algorithm. We
used a Pentium-4 PC, 800MHz, 512MB of main memory,
with SuSE Linux 9. We can manipulate up to 10,000,000
nodes of ZBDDs in this PC.

For evaluating the performance, we conducted an exper-
iment for finding all simple disjoint decompositions in th
frequent itemset data extracted from two example of bench-
mark database[7]. The specification of the two databases
are shown in Table 1. In this table, the column “#Items”
shows the number of items used in the database, “#Records”
is the number of records, “Total literals” means the total
number of each record size. (Record size is the number of
items appearing in the record.) “Literals/Records” shows
average number of items appearing in a record.

In our experiment, at first we generate a ZBDD repre-
senting the histogram of all patterns seen in the database,
and then we extract a set of frequent patterns that appear
more than or equal to α times in the database. We con-

ducted this frequent itemset mining procedure for various
threshold α. In this process, we need about 300 second
for “mushroom”, and 6 second for the first 1,000 lines of
“T10I4D100K”, respectively. The detailed techniques in
the ZBDD-based frequent itemset mining method are de-
scribed in a recent articles[15].

The experimental results are summarized in Table 2. In
the table, the column “Min-freq.(α)” shows the minimum
frequency parameter α. “#Items” means the number of
items related to the frequent itemset. “#Patterns” is the
number of patterns in the frequent itemsets. “ZBDD nodes”
shows the number of ZBDD nodes representing the fre-
quent itemset data, which is the input of the decomposi-
tion algorithm. “Time(sec)” shows the CPU time for gen-
erating the decomposition tree representing all simple dis-
joint decompositions. (not including the time for generat-
ing initial ZBDDs.) “#Decomp.” is the number of non-
trivial decompositions extracted by our method. Notice that
all sub-decompositions caused by associative operations are
counted only once for one group, so, actual number of de-
compositions may exist more.

As shown in the table, our decomposition method is very
powerful to deal with a huge number of frequent patterns.
We succeeded in finding simple disjoint decompositions in
the frequent itemset data in a feasible time. It is another
interesting point that the decomposition results are different
depending on threshold α.

In Fig. 7, we show an example of decomposition result
for “mushroom” with threshold α = 5, 000. The upper de-
scription lists all frequent patterns of itemsets, and the lower
is the decomposition result. In this format, “AND( )” and
“OR( )” show the associative decomposition groups, and
“[ ]” means another general decomposition. “!” is a spe-
cial character to mean “+1”. For example, “AND(!x !y)”
indicates (x + 1)(y + 1). Even for this small example, we
can see that it is hard for human beings to find the hidden
structures from the plain list. By using our decomposition
method, the data becomes remarkably understandable.

In Fig. 8 and Fig. 9, we show the decomposition results
for “mushroom” and “T10I4D100K” with various thresh-
old α. We can observe interesting structures hidden in the
frequent itemset data. Notice that the frequent itemset data
handled here are too large to manipulate explicit manner.
ZBDD-based implicit manipulation is a key technique

5 Conclusion

In this paper, we proposed the definition of simple dis-
joint decomposition for sets of combinations, and presented
an efficient ZBDD-based method for finding all possible
simple disjoint decompositions on a set of combinations.
The experimental results shows that our method is very
powerful and useful for extracting hidden interesting struc-
tures from the frequent itemset data.

ICDM 2005 Workshop on Computational Intelligence in Data Mining 7



Table 1. Spec. of databases
Data name #Items #Records Total Literals Literals/Records
mushroom 119 8,124 186,852 23.0
T10I4D100K (first 1000 lines) 795 1,000 10,098 10.1

Table 2. Experimental result
Data name Min-freq.(α) #Items #Patterns ZBDD nodes Time(sec) #Decomp.
mushroom 5,000 7 42 11 (<0.1) 5

2,000 35 6,624 286 (<0.1) 4
1,000 54 123,278 1,417 0.1 4

500 67 1,442,504 4,011 0.2 5
200 83 18,094,822 12,340 0.5 6
100 90 66,076,586 23,068 0.8 7
50 98 198,169,866 36,652 2.0 7
20 113 781,458,546 53,776 4.0 8
10 115 1,662,769,668 61,240 4.9 9
5 117 2,844,545,896 62,389 11.7 10
2 119 5,043,140,094 51,217 7.1 10
1 119 5,574,930,438 40,557 5.0 10

T10I4D100K 70 1 2 1 (<0.1) 1
(first 1000 lines) 60 4 5 4 (<0.1) 1

50 12 13 12 (<0.1) 1
30 74 75 74 (<0.1) 1
20 171 173 172 0.1 2
10 378 506 430 0.8 22
5 585 3,891 1,322 1.5 42
2 745 30,893 9,903 13.3 13
1 795 24,467,220 70,847 1,698.0 8

List of all frequent patterns:

x39 x86 x85 x34, x39 x86 x85, x39 x86 x34, x39 x86, x39 x85 x34, x39 x85, x39 x34, x39,
x90 x86 x85 x36 x34, x90 x86 x85 x36, x90 x86 x85 x34, x90 x86 x85, x90 x86 x36 x34,
x90 x86 x36, x90 x86 x34, x90 x86, x90 x85 x36 x34, x90 x85 x36, x90 x85 x34, x90 x85,
x90 x36 x34, x90 x36, x90 x34, x90, x86 x85 x36 x34, x86 x85 x36, x86 x85 x34, x86 x85,
x86 x36 x34, x86 x36, x86 x34, x86, x85 x59, x85 x36 x34, x85 x36, x85 x34, x85, x59,
x36 x34, x36, x34, 1

Decomposition result:

AND(OR(AND(OR(x39 AND(!x90 !x36)) !x86 !x34) x59) !x85)

Figure 7. Decomposition result for “mushroom” with α = 5, 000.

8 ICDM 2005 Workshop on Computational Intelligence in Data Mining



Now we have just finished implementation of decompo-
sition algorithms, and starting experiments for data mining
applications. The concept of simple disjoint decomposition
will be a meaningful operation in database processing, and
we hope that our result has an impact to the data mining
community.
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α = 2, 000:

AND(![x102 x58 OR(x66 x61) x29 x116 x56 x6 x11 x110 x94 x53 x28 x24 x10 x114 x39 x2 x93
x90 AND(!x86 !x34) x76 x67 x63 x59 x52 x38 x36 x23 x13 x9 x3 x1] !x85)

α = 1, 000:

AND(![x48 x102 x58 AND(!x101 !x95) x66 x61 x29 x17 OR(x69 x77) x117 x116 x56 x6 x111 x11
x44 x110 x43 x94 x53 x37 x28 x24 x16 x10 x41 x15 x114 x99 x39 x14 x2 x107 x98 x93 x90 x86
x76 x67 x63 x59 x54 x52 x38 x36 x34 x23 x13 x9 x3 x1] !x85)

α = 500:

AND(![OR(x32 x7 x31) x119 x48 x102 x91 x58 x80 x101 x95 x66 x61 x29 x17 OR(x78 x68) x69
x77 x45 OR(x60 x64) x117 x116 x56 x6 x111 x11 x44 x110 x43 x42 x94 x53 x37 x28 x24 x16
x10 x41 x15 x114 x99 x55 x39 x14 x2 x107 x98 x93 x90 x86 x76 x67 x63 x59 x54 x52 x38 x36
x34 x23 x13 x9 x3 x1] !x85)

α = 200:

AND(![x35 OR(x32 x31) x7 x119 x48 x112 x102 x91 x58 OR(x80 x71 x79 x70) x101 x95 x66 x61
x29 x17 x46 OR(x78 x68) x69 x77 x45 x60 x117 x65 x116 x56 x6 x111 x64 x11 x44 x110 x43
x42 x109 x94 x53 x37 x28 x24 x16 x10 x115 x41 OR(x27 x26) x15 x4 x114 x108 x99 x55 x39
x14 x2 x113 x107 x98 x93 x90 x86 x76 x67 x63 x59 x54 x52 x40 x38 x36 x34 x25 x23 x13 x9
x3 x1] !x85)

Figure 8. Decomposition results for “mushroom” with various α.
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α = 60:

!OR(x354 x177 x217 x368)

α = 50:

!OR(x438 x460 x829 x684 x354 x177 x217 x529 x766 x283 x120 x368)

α = 20:

!OR(x893 x634 x661 x826 x510 x886 x38 x440 x75 x438 x998 x752 x812 x57 x694 x692 x982
x413 x8 x349 x912 x906 x162 x275 x55 x470 x598 x793 x989 x33 x995 x509 x797 x69 x516
x593 x236 x93 x140 x112 x48 x348 x239 x32 x21 x132 x10 x72 x871 x832 x580 x168 x154
x573 x472 x31 x362 x494 x489 x196 x919 x744 x28 x600 x460 x829 x605 x477 AND(!x346
!x217) x684 x354 x296 x12 x617 x522 x885 x676 x145 x956 x758 x935 x780 x638 x631 x487
x541 x116 x789 x788 x526 x403 x918 x844 x722 x419 x310 x73 x151 x874 x480 x204 x70 x43
x944 x888 x614 x523 x803 x778 x579 x411 x147 x921 x78 x27 x862 x392 x960 x795 x623 x571
x177 x175 x161 x878 x653 x276 x183 x914 x720 x675 x597 x280 x279 x192 x71 x390 x970
x947 x809 x782 x682 x658 x529 x350 x798 x569 x966 x883 x766 x738 x381 x283 x229 x937
x895 x449 x854 x674 x581 x401 x205 x120 x39 x825 x775 x561 x538 x368 x274)

α = 10:

OR(x207 x820 x732 x769 x550 x428 x450 x258 x173 x922 x893 x949 x405 x351 x215 x634 [x661
x394 x510 AND(!x515 !x33) x346 x780 x487 AND(!x888 !x561) x217 x720 x71 x766 x283] x308
x948 x815 x838 x707 x826 x804 x309 x887 x318 x860 x68 x241 x129 x843 x429 x886 [x819 x75
x438 AND(!x598 !x782) x460 x829 x684 x789 x70 x529 x937 x368] x468 x686 x265 x784 x252 x38
x440 x486 x108 x322 x361 [x357 AND(!x752 !x58) AND(!x158 !x617) x583 x354 x480 x27] x563
x170 x867 x710 x595 x899 x998 x991 x852 x160 x923 x812 x800 x57 x567 x694 x692 x984 x982
x94 x413 x197 x8 x349 x963 x665 x546 x406 x373 x117 AND(!x912 !x348) x906 x711 AND(!x534
!x470 !x995) x378 x162 x45 x259 x275 x897 x95 x55 x37 x427 x793 x97 x989 x336 x527 x343
x983 x611 [x509 x862 x801 x461 x392 x569] x110 x577 x913 x797 x415 x69 x6 AND(!x516 !x744)
x423 x1 x122 x593 x90 x952 x236 x606 x93 x594 x387 x285 x140 x112 x521 x765 x639 x319 x126
x48 x500 x100 x239 x136 x54 x32 x21 x464 x172 x132 x10 x981 x72 x988 x871 x832 x580 x168
x154 x111 x651 x628 x573 x472 x329 x181 x31 x591 x362 x673 x641 x494 x489 x196 x919 x736
AND(!x517 !x883) x115 x5 x742 x28 AND(!OR(x709 x177 x970) !x310) x600 x746 x649 x355 x234
x884 x605 x477 x210 x841 x740 x548 x296 x12 x522 x885 x792 x790 x731 x676 x385 x145
AND(!x956 !x788) x763 x758 x242 x17 x935 x735 x638 x631 x471 x946 x805 x701 x541 x171 x395
x201 x198 x116 x975 x774 x526 x403 x326 x967 x918 x846 x844 x810 x722 x484 x469 x419 x118
x73 x890 x830 x504 x151 x874 x334 x204 x43 x944 x614 x523 x290 x266 x903 x842 x803 x778
x579 x572 x411 x147 x921 x78 x839 x130 x125 x960 x910 AND(OR(x795 AND(!x623 !x853)) !x571)
x490 x424 x175 x161 AND(!x878 !x538) x706 x653 x277 x276 x256 x193 x183 x932 x914 x675 x618
x597 x530 x496 x280 x279 x272 x192 x390 x227 x947 x809 x682 x658 x350 x214 x798 x620 x143
x104 x978 x966 x738 x708 x381 x352 x294 x229 x964 x895 x857 x449 x422 x950 x854 x733 x674 x35
x814 x704 x581 x401 x205 x120 AND(!x39 !x825) x834 x775 x687 x448 x274 x240 x164 x52 x25)

Figure 9. Decomposition results for “T10I4D100K” (first 1000 lines) with various α.
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Abstract

We discuss kernel fuzzy classifiers with hypersphere re-
gions, which are defined in the feature space mapped from
the input space. Starting from a hypersphere with a small
radius defined at a datum, we expand the hypersphere if the
new datum is within the prescribed distance from the center.
And if not, we define a new hypersphere. After rule gener-
ation, we resolve overlaps of different classes contracting
the hyperspheres. We then define a truncated conical mem-
bership function for each hypersphere. We demonstrate the
usefulness of the kernel version of fuzzy classifiers with hy-
persphere regions with several benchmark data sets.

1 Introduction

In support vector machines (SVMs) [1], the input space
is mapped into a high dimensional feature space, and in
the space, the optimal hyperplane is determined so that two
classes are separated with the maximum margin. Accord-
ing to performance comparisons in a wide range of appli-
cations, support vector machines have shown to have high
generalization ability.

Inspired by the success of support vector machines,
to improve generalization ability and classification ability,
conventional pattern classification techniques are extended
to incorporate maximizing margins and mapping to a fea-
ture space. For example, online perceptron algorithms, neu-
ral networks, and fuzzy systems have incorporated maxi-
mizing margins [2].

There are numerous conventional techniques that are ex-
tended to be used in the high-dimensional feature space,
e.g., kernel perceptrons, the k-means clustering algorithm,
the kernel self organizing feature map, kernel discriminant
analysis, kernel principal component analysis, kernel Ma-
halanobis distance, and kernel least-squares [2].

One of the problems of support vector machines is that
it is difficult to analyze the behavior of support vector ma-

chines because the input space is mapped to the high-dimen-
sional feature space. There are several approaches to visu-
alize support vector machines [3, 4, 5]. Another approach
is to extend fuzzy classifiers to kernel fuzzy classifiers that
are defined in the feature space [6]. Although fuzzy classi-
fiers with hyperbox regions such as discussed in [7, 8] are
difficult to extend to the feature space, classifiers with hy-
perspheres [9, 10, 11] are relatively easily extended.

In this paper, we define fuzzy rules in the feature space
in the way similar to fuzzy min-max classifiers [7]. Instead
of generating and contracting hyperboxes, we generate and
contract hyperspheres in the feature space. To facilitate effi-
cient calculations in the feature space, we use kernel tricks.
Namely, we use kernel functions associated with a mapping
function to avoid explicit treatment of variables in the fea-
ture space.

Suppose there are training data belonging to one of n
classes. We scan the training data and for a training da-
tum with no associated hyperspheres we define the hyper-
sphere at the training datum with a predefined small ra-
dius Rε. If there is a hypersphere that includes the train-
ing datum or whose center is within the prescribed max-
imum radius Rmax, we modify the center and the radius
of the hypersphere. If not, we generate the hypersphere at
the training datum with radius Rε. After generating the hy-
perspheres, we check whether the hyperspheres of different
classes overlap. If there is an overlap, we resolve the over-
lap contracting the hyperspheres.

In Section 2, we discuss the rule generation of kernel
fuzzy classifiers. In Section 3, we compare the generaliza-
tion performance of the method with that of other classifiers
using two-class and multiclass data sets.

2 Dynamic Rule Generation

2.1 Concept

In the first stage we scan the training data and generate
hyperspheres of each class without resolving overlaps be-
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tween classes. Then in the second stage, we resolve over-
laps between classes, contracting hyperspheres.

We explain the idea of hypersphere generation using the
two-dimensional example shown in Fig. 1. In the figure,
assume that Data 1, 2, and 3 belonging to the same class
are scanned in this order. For Datum 1, we generate the
circle with Datum 1 being the center and with radius Rε.
Then for Datum 2, we check if the circle is expandable.
Assume that distance between Data 1 and 2 is shorter than
Rmax. Then we generate the dotted circle shown in Figure
1, whose center is at the middle of data 1 and 2 and whose
diameter is the distance between Data 1 and 2.

If Datum 3 is inside of the dotted circle, we update the
center and the radius. But because Datum 3 is outside of the
circle, we check if the distance between the center and the
datum is within Rmax. If so, we update the center adding
Datum 3 in addition to Datum 1 and 2 and calculate the min-
imum radius that includes Data 1, 2, and 3. If the circle is
not expandable, we generate the circle with Datum 3 being
the center and with radius Rε.

x1

1

0

3

2

x2

c

Figure 1. Generation of circles

After generating hyperspheres for each class without
considering the overlap between classes, we resolve over-
laps by contracting hyperspheres. In Fig. 2, two circles
belonging to classes i and j are overlapped. We resolve this
overlap, contracting the circles as shown in the figure.

For each hypersphere we define a membership function
for datum x, in which the degree of membership is 1 if x is
in the sphere and the degree of membership decreases as x
moves away from the hypersphere. Fig. 3 shows an exam-
ple for a two dimensional case. The shape of the member-
ship function is a truncated conical. Usually, the degree of
membership is defined between 0 and 1, but to avoid unclas-
sifiable regions, we assume negative degree of membership.

x1
0

x2

class i

class j

Figure 2. Resolution of overlap

2.2 Rule Generation

In the following we discuss the procedure of rule gener-
ation in detail.

Let the training inputs for class i be xij for j = 1, . . . ,
Mi, where xij is the jth training datum for class i and Mi is
the number of data for class i. And let g(x) be the mapping
function that maps the input space into the feature space.

The procedure for generating hyperspheres for class i is
as follows.

1. Generate the hypersphere Si1 with center ci1 = g(xi1)
and with radius Ri1 = Rε. Set N s

i = 1, Xi1 = {1},
and j = 2, where N s

i is the number of generated hy-
perspheres for class i and Xi1 is the set of indices of
data for calculating the center ci1.

2. Check if xij is in a sphere. Namely if there exists such
k (1 ≤ k ≤ N s

i ) that satisfies

‖g(xij)− cik‖ ≤ Rik, (1)

xij is in hypersphere Sik, where

cik =
1
|Xik|

∑
j′∈Xik

g(xij′ ). (2)

Here, |Xik| is the number of elements in Xik. If there
are more than one hypersphere that satisfy (1), we se-
lect one whose value on the left-hand side of (1) is the
smallest. Update the center given by (2) adding xij ,
update Rik, and go to Step 4. Otherwise, find hyper-
sphere Sik whose center is nearest to xij :

k = arg min
k′
‖g(xij)− cik′‖. (3)
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x10

x2

Degree =  0

Degree =  1

Figure 3. Definition of a membership function

3. Check if the hypersphere Sik can be expandable for the
inclusion of xij . If

‖g(xij′ )− cik‖ ≤ Rmax for j ∈ Xik (4)

is satisfied, hypersphere Sik is expandable.

Then, we set

Xik ← Xik ∪ {xij}, (5)

Rik = max
j′∈Xik

‖xij′ − cij‖. (6)

Otherwise, we set

N s
i ← N s

i + 1, (7)

Xi,Ns
i

= {j}, (8)

and generate the hypersphere Si,Ns
i

with center ci,Ns
i

= g(xij) and with radius Ri,Ns
i

= Rε.

4. If j = Mi, terminate the algorithm. Otherwise, j ←
j + 1 and go to Step 2.

2.3 Overlap Resolution

We can resolve overlaps by contracting hyperspheres or
tuning membership functions, which are defined in the next
section. But since we are going to define truncated conical
membership functions shown in Fig. 3, we need to resolve
overlaps between hyperspheres.

The ratio of contraction directly influences the gener-
alization ability. But here, we resolve overlaps of hyper-
spheres Sij and Sko (i 
= k) in the following way:

1. For Rij ≤ ‖cij − cko‖ < Rij + Rko and Rko ≤
‖cij − cko‖ < Rij + Rko

As shown in Fig. 2, two hyperspheres overlap but each
center is outside of the other hypersphere. We resolve
the overlap contracting the hyperspheres by

∆r =
Rij + Rko − ‖cij − cko‖

2
, (9)

Rij ← Rij −∆r, (10)

Rko ← Rko −∆r. (11)

2. For Rij < ‖cij − cko‖ ≤ Rko

One of the hypersphere centers is inside of the other
hypersphere but the other is not. We resolve the over-
lap contracting the hyperspheres by

Rko ← ‖cij − cko‖ − Rij

2
, (12)

Rij ← Rij

2
. (13)

3. For ‖cij − cko‖ < Rij ≤ Rko

Both centers of the hyperspheres are inside of the other
hyperspheres. We resolve the overlap contracting the
hyperspheres by

Rij ← ‖cij − cko‖
2

, (14)

Rko ← ‖cij − cko‖
2

. (15)

Contraction of hyperspheres may result in misclassifica-
tion of the correctly classified training data, and thus may
worsen the generalization ability. This is avoided by tuning
membership functions. But here, we do not consider tuning.
Instead, we optimize the value of Rmax by cross validation.

2.4 Definition of Membership Functions

We define the membership function of Sij for x, mij(x),
by

mij(x) =
{

1 for dij(x) ≤ Rij ,
1− dij(x) + Rij for dij(x) > Rij ,

(16)
where dij(x) is the distance between g(x) and cij and is
given by

dij(x) = ‖cij − g(x)‖. (17)

The membership function given by (16) takes negative
value so that any data are classified into a definite class un-
less they are on the class boundaries. Since the slopes of the
membership functions are the same for all the hyperspheres,
the class boundary on the line segment between cij and cko
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is the middle point of the line segment between the two hy-
perspheres Sij and Sko. This is a similar idea of the optimal
separating hyperplane of a support vector machine. But if
there are misclassified data belonging to class i or j, we can
tune the slopes of membership functions [12]. But here we
do not consider this.

2.5 Kernel Methods

In kernel methods, we treat the variables in the feature
space implicitly using kernels. In our proposed method,
we need to calculate ‖cij − cko‖ and ‖g(x) − cij‖ using
H(x,x′) = gT (x)g(x). Namely,

‖cij − cko‖2 = (cij − cko)T (cij − cko)

=
1

|Xij |2
∑

x,x′∈Xij

H(x,x′)

− 2
|Xij | |Xko|

∑
x∈Xij ,x′∈Xko

H(x,x′)

+
1

|Xko|2
∑

x,x′∈Xko

H(x,x′), (18)

‖g(x)− cij‖2 = H(x,x)− 2
|Xij |

∑
x′∈Xij

H(x,x′)

+
1

|Xij |2
∑

x′,x′′∈Xij

H(x′,x′′). (19)

In our study, we use the following kernels:

1. linear kernels: H(x,x′) = xtx′,

2. polynomial kernels:

H(x,x′) = (xtx′ + 1)d,

where d is a positive integer,

3. RBF kernels:

H(x,x′) = exp(−γ||x− x′||2), (20)

where γ is a positive parameter.

4. Mahalanobis kernels:

H(x,x′) = exp
(
− δ

m
(x− x′)T Q−1(x− x′)

)
,

where δ is a positive parameter and Q is the diago-
nal covariance matrix calculated using the training data
[13].

Because, except for linear kernels,
∑

i

g(xi) 
= g(
∑

i

xi) (21)

holds, we need to calculate the second term in the right hand
side of (19) for x but the result of the third term may be
saved to reduce computation time. Likewise, by saving the
result of (18), computation time is reduced.

3 Performance Evaluation

We compared the generalization ability of the kernel
fuzzy classifier and other methods using two groups of data
sets: (1) some of the two-class data sets used in [14, 15]1

and (2) multiclass data sets used in [2, 12]. We used the lin-
ear and Mahalanobis kernels for the kernel fuzzy classifier.

Throughout the experiments we set Rε = 0.01 and se-
lected the value of Rmax from 0.05 to 1.5 by the increment
of 0.05 by 10-fold cross validation. In addition to this we
set a large value to Rmax to avoid clustering the class data.
For Mahalanobis kernels we need to determine Rmax and
δ. Like Mahalanobis kernels for support vector machines
[13], we determine the values of Rmax and δ by line search.
Namely, first we determine the value of Rmax with δ = 1 by
cross validation. Then with the determined value of Rmax,
we determine the value of δ by cross validation changing δ
from 0.1 to 2 with the increment of 0.1.

3.1 Evaluation for Two-class Problems

Table 1 lists the specifications of two-class problems.
Each problem has 100 or 20 training data sets and their cor-
responding test data sets. We determined the optimal values
of Rmax by 10-fold cross validation. For comparison, we
used the support vector machine (SVM) with Mahalanobis
kernels and the kernel fuzzy classifier with ellipsoidal re-
gions [6]. For the support vector machine, we determined
the optimum value of the margin parameter C and δ by line
search. For the kernel fuzzy classifier with ellipsoidal re-
gions (KFC-ER), we used RBF kernels and determined the
parameters by 5-fold cross validation.

We performed cross validation of the first five training
data sets, and selected the median of the best values. Then,
for the optimal values, we trained the classifier for 100 or
20 training data sets and calculated the average recognition
error and the standard deviation for the test data sets.

Table 2 lists the parameter values for the kernel fuzzy
classifiers determined by cross validation. The symbol ∞
denotes that the highest recognition rate for the validation
data set was obtained when the class data were not clus-
tered. Except for the banana and image data sets relatively
large values were selected for Rmax.

Table 3 lists the average classification errors and the
standard deviations with the ± symbol. The “KFC-L” and

1http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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Table 3. Average error rates and standard deviations of the test data sets.

Data KFC-L KFC KFC-ER SVM

Banana 12.6 ±0.9 12.4 ±0.8 10.9 ±0.6 10.4±0.5

B. Cancer 31.6 ±5.3 31.0 ±4.6 26.5 ±4.4 25.6±4.4

Diabetes 33.2 ±5.9 28.7 ±2.5 25.3±2.0 23.7±1.7

German 26.5 ±2.4 27.4 ±2.2 25.2±2.4 23.9±2.1

Heart 18.7 ±3.5 16.2 ±3.3 15.6±3.6 15.7 ±3.2

Image 2.8±0.7 3.7 ±0.5 2.9±0.7 3.0±0.5

Ringnorm 24.4±0.6 1.4±0.1 3.2 ±0.3 1.7±0.1

Table 1. Benchmark data sets for two-class
problems.

Data Inputs Train. Test Sets

Banana 2 400 4900 100

B. cancer 9 200 77 100

Diabetes 8 468 300 100

German 20 700 300 100

Heart 13 170 100 100

Image 18 1300 1010 20

Ringnorm 20 400 7000 100

Table 2. Parameter values selected by cross
validation.

Data Linear Mahalanobis

Rmax Rmax δ

Banana 0.1 0.35 0.7

B. Cancer 0.8 0.9 1.0

Diabetes 0.65 0.6 0.5

German 0.8 0.5 0.5

Heart ∞ ∞ 0.1

Image 0.05 0.1 1.4

Ringnorm ∞ ∞ 1.2

“KFC” columns list the values for the kernel fuzzy classi-
fier with linear kernels and that with Mahalanobis kernels,
respectively.

The best performance in the row is shown in boldface.
For the german and image data sets, the KFC-L performed
better than the KFC, but for the other four data sets, the
KFC performed better.

The KFC-L showed the best performance for the image
data set, but for the ringnorm data set, the KFC-L showed
a large error compared to other methods. Table 4 shows
the best recognition rates of the ringnorm validation data
sets. The recognition rates of the KFC-L are very low com-
pared to those of the KFC. Because smaller Rmax results
in overfitting, the large value of Rmax was selected as opti-
mal. And the large value caused large contraction of hyper-
spheres. Thus, in such a situation we need to optimize the
membership functions as discussed in [12]. Except for the
heart, image, and ringnorm data sets, KFC or KFC-L per-
formed poorly compared to KFC-ER and SVM. For these
data sets to improve the generalization ability we need to
optimize the membership functions.

3.2 Evaluation for Multiclass Problems

As multiclass data sets, we used the data sets in [2, 12].
They were the iris data [16, 17], the numeral data for license
plate recognition [18], the thyroid data [19],2 the blood cell
data [20], and hiragana data [12, 21]. Table 5 lists the spec-
ifications of the data sets.

We used pairwise support vector machines. To resolve
unclassifiable regions, we used fuzzy support vector ma-
chines with minimum operators [2].

Table 6 shows the parameter values determined by cross
validation. Unlike two-class problems, a relatively small
value was set to Rmax.

2ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
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Table 4. Cross validation results (%) for the
ringnorm data set.

Data KFC-L KFC

Rmax Rec. Rmax δ Rec.

1 ∞ 75.75 ∞ 1.0 99.00

2 ∞ 76.75 ∞ 1.6 98.75

3 ∞ 74.00 ∞ 1.2 98.75

4 1.2 77.50 ∞ 1.1 99.00

5 ∞ 75.00 ∞ 1.4 98.75

Table 5. Benchmark data sets for multi-class
problems.

Data Inputs Classes Train. Test

Iris 4 3 75 75

Numeral 12 10 810 820

Thyroid 21 3 3772 3428

Blood cell 13 12 3097 3100

Hiragana-50 50 39 4610 4610

Hiragana-105 105 38 8375 8356

Hiragana-13 13 38 8375 8356

Table 6. Parameter values selected by cross
validation.

Data Linear Mahalanobis

Rmax Rmax δ

Iris 0.3 0.35 0.6

Numeral 0.05 0.65 0.9

Thyroid 0.1 0.25 0.6

Blood cell 0.1 0.05 0.2

Hiragana-50 0.05 0.15 1.0

Hiragana-13 0.05 0.05 0.3

Hiragana-105 0.05 0.10 0.5

Table 7 lists the recognition rates of the test data sets
for 6 classifiers. The results of the fuzzy mini-max classi-
fier (FMM) and the k-nearest neighbor classifier (k-NN) are
from [12]. They showed the best performance for the test
data. For k-NN, the best k was selected from 1, 3, 5, and
7. But for other classifiers, the parameters were determined
by cross validation. The SVM used Mahalanobis kernels
and the margin parameter and δ were determined by cross
validation. For the KFC-ER, polynomial kernels were used
and the polynomial degree was determined by 5-fold cross
validation.

The performance difference between the KFC-L and
KFC is small. The reason may be that because the multi-
class data sets are relatively easily classified compared to
the two-class problems, the improvement of separability by
mapping to the feature space resulted in overfitting. For
the thyroid data, the KFC-L and KFC show poor recogni-
tion rates. This is the same tendency with that of the least-
squares support vector machines [2]. But for other data sets,
performance is comparable.

4 Conclusions

In this paper we discussed kernel fuzzy classifiers with
hypersphere regions. We scan the training data and if no
hyperspheres are defined for the class associated with a da-
tum we define the hypersphere at the training datum with a
predefined small radius. If there is a hypersphere that can
include the training data within the prescribed maximum
radius, we expand the hypersphere. If not, we generate the
hypersphere at the training data with the small radius. After
generating the hyperspheres, we resolve the overlap con-
tracting the hyperspheres.

For some two-class data sets the proposed classifiers
showed performance inferior to support vector machines
and kernel fuzzy classifiers with ellipsoidal regions, but for
multiclass problems, their performance was comparable to
other methods.

To further improve the generalization ability, we need to
tune the membership functions.
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Abstract 
 
This work presents a methodology to generate 

automatically a set of fuzzy queries that are translated 
from a set of fuzzy rules learned from a data set. A rule 
simplification approach is proposed, which allows a 
better interpretability of the fuzzy query sentence. The 
fuzzy query sentences are generated in such a way that 
they can be processed by a standard fuzzy query system. 
The methodology is applied to a benchmark data set 
considering a scenario of target selection in a direct 
market application. The results obtained by the current 
approach are compared with the results of a standard a 
decision tree induction algorithm. 

 

1. Introduction 

The integration of Data Mining (DM) tools with Data 
Base Management Systems (DBMS) is now more than 
trend, it is a reality. The major DBMS vendors have 
already integrated DM solutions within their products. On 
the other hand, the main DM suites have also provided the 
integration of DM models into DBMS trough modeling 
languages such as the Predictive Model Markup Language 
(PMML). It is thus a fact that future research on new DM 
tools and methods must consider their integration with 
DBMS. 

On the application side, data intensive industries, such 
as insurance, accounting and telecommunications, among 
others, need frequently to retrieve their costumers for 
different marketing relationship actions. Nevertheless, 
defining a query sentence that captures the main features 
of a subset of records is a non trivial task. The queries 
generation can thus be regarded as a DM task. 

Structured Query Languages (SQL) provides a 
structured description of the retrieved records. A standard 
SQL sentence representing a concept can be translated 
from rules generated by an algorithm for decision-tree or 
rule induction. The translation of machine learning rules 
into SQL sentences is straightforward: for each class, each 
rule corresponds to a sentence (in the WHERE clause), 
and all rules related to the same class are aggregated with 
a disjunctive (OR) operator. A standard query, however, 
will return all the records that match the query sentence. 

However, it is frequently desirable to rank those records, 
such that the manager is able to define priorities. 

Neural networks and Bayesian classifiers are also 
frequently found in most of DM suites. Such models may 
be coded into DBMS, via PMML, to retrieve a ranked list 
of records. Nevertheless, neural networks and Bayesian 
classifiers models are not linguistically understandable, 
such that managers cannot directly validate the knowledge 
extracted by the DM algorithm. 

Fuzzy queries have emerged in the last 25 years to deal 
with the necessity to soften the Boolean logic in relational 
databases. A fuzzy query system is an interface to human 
users to get information from database using (quasi) 
natural language sentences [1][2][3]. Many fuzzy queries 
implementations have been proposed, resulting in slightly 
different languages such as SQLf [4], FQUERY [5] and 
Summary SQL [6][7], among others. Although some 
variations according to the particularities of different 
implementations, the answer to a fuzzy query sentence is 
a generally a list of records, ranked by the degree of 
matching.  

The focus of attention of the fuzzy query research has 
been on the expressive power of the fuzzy query 
language, since the query is usually provided by the user. 
Nevertheless, the definition of a query to retrieve the 
records according to their features’ values is a very 
difficult task. Not due to the lack of expressive power of 
the query language, but due to the difficulty on defining 
the concept itself. 

Fuzzy queries sentences are structured definitions of 
fuzzy concepts. Under this assumption, fuzzy queries can 
be automatically generated by fuzzy rule based classifiers.  

Fuzzy rule based classifiers are a very active research 
field [8][9][10]. The weighted fuzzy rule based approach 
allows better classification results since it allows to define 
more precisely the decision boundary among the classes 
[11][12]. The translation of weighted fuzzy rules into 
fuzzy queries is not straightforward since most of fuzzy 
queries languages do not support weights. 

In this work, it is proposed a methodology to translate 
a set of rules computed by a weighted fuzzy classifier into 
fuzzy queries, such that they can be coded into most of 
available fuzzy query languages. The whole procedure is 
sketched in Figure 1. The left side of the figure shows an 
existing fuzzy query system (denoted Fuzzy SQL) used to 
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process the fuzzy queries connected to a DBMS. The 
proposed methodology is showed in the right side of the 
figure. A training set is selected from the database and 
used to generate a set of fuzzy rules by the fuzzy 
classifier. The set of rules generated by the fuzzy 
classifier may be very large, containing many useless 
rules. The fuzzy rule base is thus pruned and then 
translated into a set of fuzzy query sentences. The fuzzy 
query system is used to retrieve an ordered set of records 
from the database, corresponding to a given class. 
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Figure 1. The proposed approach. 

The remainder of this paper is organized as follows. 
Next section presents the weighted fuzzy rule-based 
classifier and the translation of fuzzy rules into fuzzy 
queries. Section 3 describes the learning algorithm of 
fuzzy rules and the pruning procedure. Section 4 presents 
the results of the application of the proposed methodology 
for a set of benchmark data sets and a case study using the 
Credit Card data set. The fuzzy queries results are 
compared to standard queries generated by a standard 
decision-tree induction algorithm. Finally some 
conclusions are drawn. 

2. Fuzzy rule-based classifier 

Consider the standard classification problem where 
input variables are presented as a p-dimensional vector x 
in the input variable domain p

p XXXX =××× K21  
and the output variables represented by the classes’ set 

{ }mCC ,,1 K=C . The solution to the classification 
problem is to assign a class label C∈kC  to an 

observation pXt ∈)(x , where t  represents a record in the 
database.  

Fuzzy classifiers attempt to compute, for each class, a 
fuzzy membership value ))(( t

kC xµ  that correspond to the 

degree of matching of the observation )(tx  to the class 

kC . 
This section describes the weighted fuzzy rule-based 

classifier approach, which is based on the fuzzy pattern 
matching approach [8]. Under this approach, the output of 
the fuzzy classifiers is computed in two steps: 

1. for each input, compute partial outputs as the 
degree of matching of the observed input value to 
each class, 

2. compute the final output by the aggregation of all 
partial outputs. 

The following subsections describe the main steps of 
the fuzzy rule-based classifier approach. 

2.1. Fuzzification 

In a general application, the input variables may be 
numeric (discrete or continuous) or nominal. Fuzzy sets 
allow a unified representation for nominal and numeric 
variables as fuzzy sets. Fuzzification is thus an important 
issue in fuzzy query generation since it provides the 
numeric-to-linguistic interface that allows dealing with 
numeric values as linguistic terms.  

Generally, each input variable ix  can be described 
using ordered linguistic terms in a descriptor set 

{ }
iinii AA ,,1 K=A . When the variable is nominal, the 

descriptor set is the set of possible values for the variable 
(or a combination of them). When the variable is numeric, 
the meaning of each term iijA A∈  is given by a fuzzy 
set defined on the variable domain. 

For a single variable input )(txi , the fuzzification 
vector ( ))(,),()( 1 tutut

iinii K=u  is computed by the fuzzy 
sets in the fuzzy partition of the input variable domain as:  

( )))((,)),(()(
1

txtxt iAiAi iini
µµ K=u . (1)

An easy way to parameterize fuzzy sets is to use 
triangular membership functions that are completely 
determined by the centers of triangles, which may be 
considered as prototypes values for the corresponding 
fuzzy sets (see Figure 2).  

p1 p2 p3 p4 p5

)(xµ A1 A2 A3 A4 A5

p1 p2 p3 p4 p5

)(xµ )(xµ A1 A2 A3 A4 A5

 
Figure 2: Example of fuzzy partition. 

The fuzzification vector generalizes the information 
contained in the input variable and is computed in the 
same way if the variable is numeric or nominal. For 
nominal variables, there is no fuzziness and the 
fuzzification vector is a binary vector, indicating which 
nominal value is present on the record. 

In a general-purpose fuzzy classifier, multidimensional 
fuzzification may also be considered and computed by 
fuzzy clustering methods. Nevertheless, multidimensional 
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fuzzy sets often do not represent linguistic concepts and 
are not supported by some fuzzy query languages. 
Multidimensional fuzzy sets are thus out of the scope of 
this paper. 

2.2. Fuzzy rules 

A fuzzy rule relates input linguistic terms iijA A∈  to 

the classes C∈kC  in rules like: 
i
jkkiji cfwithCisclassthenAistxif ϕ=)( . (2)

where [ ]1,0∈i
jkϕ  is a confidence factor that represents 

the rule certainty. 
The rule (2) describes a flexible constraint on the 

values of the variable ix  that can be related to the class 
(or concept) kC . For instance, if the variable ix  
represents the “salary”, then an example of the rule could 
be: “if the customer’s salary is high then the customer’s 
class is Gold”. The confidence factor represents how 
much of this relation is true, for instance 95%. The rule’s 
certainty factor may be considered as a relative quantifier 
[13]. The above example could be interpreted as “Most of 
the high salary customers are Gold class customers”, 
where “most” is the linguistic quantifier that represent 
95% of the records in the database. Linguistic quantifiers 
can be represented as a fuzzy set defined over the unit 
interval and have been used to define fuzzy summaries in 
the language Summary SQL [6]. 

In this work, the confidence factor i
jkϕ  represents how 

much the term iijA A∈  is linked to the class C∈kC  in 

the model defined by the rule (2). A value 0>i
jkϕ  means 

that the observation of the term ijA  is related with the 

occurrence of the class kC  in i
jkϕ  of the records. 

A set of rules (or a rule base) for each input variable 
defines a sub-model that is represented by the matrix iΦ  
as shown in Table 1. In such matrix, the lines inj ...1=  
are related to the terms in the input variable descriptor set 

iA  and the columns mk ...1=  are related to classes in 

the set C , such that i
jkkiji CA ϕ=Φ ),( .  

Table 1: Rule base weights’ matrix. 

iΦ  1C  K  mC  

1iA  ),( 11 CAiiΦ  K  ),( 1 mii CAΦ  

M  M  O  M  

iinA  ),( 1CA
iiniΦ  K  ),( mini CA

i
Φ  

 

A rule base is defined for each input variable and used 
to compute partial outputs by fuzzy inference. The final 
outputs are computed as the aggregation of all partial 
outputs as described next. 

2.3. Fuzzy inference 

The fuzzy classifier output is represented by the class 
membership vector ( )))((,)),(()(

1
ttt

mCC xxy µµ K= . 

Each component ))(( t
kC xµ  is the membership of a given 

input record )(tx  to the class kC . 

The vector ( )))((,)),(()(
1

txtxt iCiCi m
µµ K=y  is the 

partial output membership vector whose components are 
the classes’ membership values considering only the 
information in the input variable i . 

The output of each sub-model is computed by 
composition-projection inference: 

iii tt Φ= o)()( uy . (3)
The composition-projection operation computed by the 

standard max-min composition operator as: 
( )( )),()),((minmax))((

...1
kijiiA

nj
ikC CAtxtx

ij
i

Φ=
=

µµ . (4)

Equation (4) computes the degree of matching of the 
fuzzification vector )(tiu  with the prototype of the class 

kC , represented by the corresponding column of the rule 
base matrix iΦ . 

The final output is computed by the aggregation of all 
partial outputs by an aggregation operator 

[ ] [ ]1,01,0: →pH  as: 

( )))((,)),(())(( 1 txtxt pCCC kkk
µµµ KHx = . (5)

The best aggregation operator must be chosen 
according to the semantics of the application. A t-norm 
operator, such as the “minimum”, gives good results to 
express that all partial conclusions must agree. In 
classification problems, the final decision is computed by 
a decision rule. The most usual decision rule is the 
“maximum rule”, where the class is chosen as the one 
with greatest membership value (Figure 3). 
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Figure 3. The weighted fuzzy classifier. 

The translation of fuzzy rules in to fuzzy queries is 
presented next. 
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2.4. Writing fuzzy queries from weighted fuzzy 
rules 

Most of the fuzzy query languages are structured to 
represent sentences in the form [4][5][6]: 

 
SELECT <Atributes> FROM <table> 
WHERE: 
<expression> 
<expression> 
… 
<expression> 

 
The attribute list and the table list are usually similar 

to standard SQL. The expression is a fuzzy logic sentence 
that is translated from the fuzzy classifier’s rules in the 
proposed method. 

Non-weighted fuzzy rules may be directly translated 
into fuzzy queries. Weighted fuzzy rules may not be 
directly translated since most of fuzzy query languages do 
not support weights. The weighted fuzzy rules must be 
converted into non-weighted fuzzy rules. This conversion 
is based on the conjunctive interpretation of fuzzy if-then 
rules, where the implication operator is computed as a t-
norm operator. Under this interpretation, a weighted rule 
may be converted into a non-weighted one by introducing 
the confidence into the rule premise, such that the rule 
originally written as (2) is converted to: 

kijkiji CisclassthenTRUEiswandAistxif )(  (6)

where the auxiliary variable ijkw  is defined for each rule 
such that:  

),()( kiji
i
jkijkTRUE CAw Φ== φµ . (7)

The membership value )( ijkTRUE wµ  is thus 

independent of the input variable observation )(txi  and 
can be stored in the database.  

The AND operator in rule (6) is computed by a t-norm 
operator and a set of rules in the rule base is aggregated 
using a t-conorm operator, resulting in the max-min 
composition operator (4). 

The translation of a set of fuzzy rules (6) into a fuzzy 
query sentence must ensure that the result of the query is 
equivalent to the classifier result. A set of fuzzy rules like 
(6) are translated to a set of expressions aggregated by 
disjunctive (OR) operators as: 

 
((x1 is A11 AND w11k is TRUE) OR ...OR 

 (x1 is A1n1 AND w1n1k is TRUE)) 
 
The aggregation between rules is computed by an 

aggregation operator (5), which is a conjunctive operator 
(AND) between sentences. The fuzzy query evaluation is 
thus equivalent to the classifier result. The fuzzy query 
sentence for the class kC  is: 

 

SELECT <Attributes> FROM <Data Base> 
WHERE: 
((x1 is A11 AND w11k is TRUE) OR ...OR 
 (x1 is A1n1 AND w1n1k is TRUE)) AND ... 
... AND ... 
((xi is Ai1 AND wi1k is TRUE) OR ... OR 
 (xi is Aini AND winik is TRUE)) AND ... 
... AND ... 
((xp is Ap1 AND wp1k is TRUE) OR ... OR 
 (xp is Apnp AND wpnpk is TRUE)). 

 
This solution can be easily implemented in most of 

fuzzy query languages.  
The rule base weights are the core of the model 

described by the fuzzy classifier and their determination 
from a data set is described in the next section. 

3. Rule Base Learning 

This section comments the estimation of the rule base 
weights from a data set. The weights estimation procedure 
computes weights for all possible rules. Generally a large 
number of fuzzy rules is generated, which makes difficult 
the linguistic interpretation of the model. A prune 
procedure is thus also proposed to reduce the rule base 
size and, consequently, the size of the corresponding 
fuzzy query. 

3.1. Weights estimation 

The rule base weights are computed from a training 
data set T , where each sample Nt ..1=  is a pair 
( ))(),( tt vx , of which )(tx  is the input variables vector for 
each record and ( ))(,),()( 1 tvtvt mK=v  is the vector 
containing the correct membership values of )(tx  to each 
class. In most of practical applications, the correct output 

)(tv  is binary, like the fuzzification of nominal variables. 
Fuzzy rule base weights may be computed in many 

ways [10]. In this work, for each input variable, each 
component ),( kiji CAΦ  of the rule base iΦ  is computed 
as [14]: 

∑
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where ))(()( txtu iAij ij
µ=  and )(tvk  is the correct 

membership of the sample t  to the class kC .  
In a probabilistic framework, equation (8) for a 

nominal input variable ix  is computed as: 
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where )( kij CAN ∩  is the number of samples in the training 

set that have the value ijA  for the variable ix  and are 

classified as class kC ; and 
ijAN  is the total number of 

samples that have the value ijA  for the variable ix . 

The conditional probability of the class kC , given the 
observation of the value ijA , computed from Bayes rule 
is: 

N

N
N

N
N

N

AP
CPCAP

ACP
ij

k

k

kij

A

C

C

CA

ij

kkij
ijk

)(

)(
)().|(

)|(

∩

==

(10)

where 
kCN  is the total number of samples classified as 

class kC  and N  the total number of samples in the 
training set. 

Comparing equations (8) and (10), it can be seen that 
the rule base weights are an estimation of the a posteriori 
probability of the class occurrence given by the 
observation of the value ijA , and: 

)|(),( ijkkiji ACPCA ≈Φ . (11) 

Equality in (11) is achieved for nominal variables. For 
continuous input variables, the result for rules’ output 
provides the interpolation of the conditional probabilities, 
weighted by the membership to the corresponding fuzzy 
set.  

The final output is an aggregation of all input variables 
to compute the final class membership. When this 
aggregation is computed by a t-norm operator (like the 
minimum or product) the final class membership is a 
rough estimation of the joint conditional probability of 
each class, given the observation of all input variables. 

The expression in (8) has been referred as the 
∑count , and has been used to compute the value of 
relative quantifiers [13]. Linguistic quantifiers can be 
processed by some fuzzy query languages such as 
Summary SQL [7] to compute fuzzy summaries. In this 
work, the fuzzy rules are translated into fuzzy queries in 
such a way that they can be processed by any fuzzy query 
language with an equivalent result to the classifier. 

The rule base weights are computed for all possible 
rules. There are generally a large number of possible 
rules, many of that are useless for the classification, which 
makes difficult the interpretation of the classifier model 
and the corresponding query sentence. A pruning 
procedure must consider the most important rules to 
generate a compact set of sentences in the fuzzy query. 

3.2. Rule Base Pruning 

Fuzzy rules’ pruning and simplification is a very active 
research area [15][16]. In this work, fuzzy rules’ pruning 

is necessary to allow a more compact set of query 
sentences. The pruning procedure is based on the values 
of two indexes: 

 The Horizontal index ( HI ), computed as: 
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 The Vertical index ( VI ), computed as: 
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The horizontal index [ ]1,0∈HI  measures how much 
the fuzzy set ijA  of the variable ix  is able to discriminate 

among the classes. The vertical index [ ]1,0∈VI  measures 
how much a class kC  is detected according to the 
possible values of the variable ix . Fuzzy rules can be 
pruned by selecting a threshold values for one of these 
indexes. 

For general-purpose classifiers, the horizontal index 
should be used since it allows selecting the fuzzy rules 
that will result in a better classification performance. For 
fuzzy queries, however, the queries are executed for a 
given class independently to retrieve the best 
representatives’ records of that class. Thus, the vertical 
index should be used to select the rules that best 
discriminates the records of a given class. 

3.3. Fuzzy Query Evaluation 

The fuzzy query evaluation is based on the standard 
metrics for evaluation of information retrieval systems: 
Precision and Recall. The Precision metric is defined as 
the number of relevant records selected as a fraction of 
the total number of selected records. The Recall metric is 
defined as the number of relevant records selected as a 
fraction of the total number of relevant records. 

The Precision and Recall metrics can be computed 
directly from the confusion matrix, presented in Table 2, 
which is similar to the one usually used to evaluate 
classification systems. The rows represent the results of 
the query system and the columns represent the true 
information about the selected records. 

Table 2: Confusion matrix 

 Relevant Not Relevant 
Selected TP FN 
Not Selected FP TN 
 
The values in the Table 2 are the standard ones: TP 

stands for the number of true positive samples, FP is the 
number of false positive samples, TN is the number of 
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true negative samples and FN is the number of false 
negative samples.  

The Precision and Recall metrics are computed as: 

)( FNTP
TPP
+

= . 
(14)

)( FPTP
TPR
+

= . 
(15)

Precision and Recall rates are both desired, but it is 
generally very difficult to achieve high values of both 
metrics simultaneously: as the Recall rate increases, the 
Precision usually decreases and vice-versa.  

Differently from a standard SQL query, a fuzzy query 
returns all the records in the database, even those 
associated to a very small membership value. In a 
practical application, it is necessary to set a membership 
threshold or the maximum number of returned records. 
These parameters must be set to run the query. 

The Precision and Recall metrics, when computed over 
the training set, are useful to give the user an insight of 
the membership threshold to be set in the fuzzy query. 
Moreover the user can adjust the threshold to their own 
needs, based on the results of the training set, which is an 
impossible using a standard SQL query. 

4. Results and Discussion 

The evaluation of the current approach is performed 
under two perspectives. The fuzzy weighted classifier is 
evaluated from a set of benchmark classification data sets 
and results are compared with the J4.8 decision tree 
induction and the Naïve Bayes algorithms, both computed 
within the Weka suite [17]. The evaluation of the fuzzy 
query generated by the proposed approach is performed 
under a target marketing scenario, using the Australian 
Credit Card data set. The fuzzy query results are 
compared with the results of the J4.8 decision tree 
induction algorithm. 

4.1. Fuzzy Weighted Classifier Evaluation 

A fuzzy weighted classifier, as described above, was 
generated for a set of benchmarks data sets. For all data 
sets the fuzzy classifier was generated using 5=n  fuzzy 
membership function of all numerical variables.  

Table 3 presents, for each benchmark data, the number 
of variables, the number of classes and the error rates for 
the Fuzzy Weighted Classifier (FWC), for the J4.8 
algorithm and for the Naïve Bayes (NB) algorithm. The 
J4.8 and NB algorithms were computed with all default 
parameters and the results in Table 3 are the average 
values of the 10-fold cross validation for both algorithms. 
Bold values indicate the best values for each benchmark. 

The FWC will have a better accuracy than the decision 
tree induction algorithm when numerical variables are 
predominant and variables are roughly statistically 

independent [14]. The NB algorithm performs better 
when the variables are independent and probabilities’ 
densities may be well approximated by the normal 
probability distribution function. Nevertheless, in general, 
the classifiers’ performance depends mainly on the 
characteristics of the problem. 

Table 3: Classifiers’ results 

Benchmark # Vars # Class FWC J4.8 NB
Abalone 8 3 44.00 39.70 42.25
Balance Scale 4 3 36.46 43.20 36.48
Credit Card 15 2 13.63 14.20 23.27
Prima indians 8 2 31.38 25.90 23.69
Ionosphere 34 2 6.27 8.55 29.91
Breast Cancer 9 2 5.76 8.40 5.75
Glass 9 7 47.64 29.40 51.87
Wine 13 3 5.62 7.90 2.80  
 

The results in Table 3 were obtained without rule base 
pruning. Fuzzy rule base pruning may improve the 
performance of the FWC [12][16]. 

4.2. Fuzzy Query Generation 

In order to evaluate the fuzzy queries generated by the 
proposed approach, the Credit Card approval data set was 
used. This data set contains 690 examples, each with 6 
numeric and 9 categorical attributes. For confidentiality 
reasons, the attributes’ descriptions have been omitted. 
The records are originally classified into two classes: 
“approved” ( 1C ) or “rejected” ( 2C ), respectively with 
45.3% and 54.7% of apriori probability. The data set was 
randomly divided into a training data set and a testing 
data set containing respectively 460 and 230 records with 
the same class distribution.  

As a “proof of concept”, the Fuzzy QueryTM tool [20] 
is used to implement the fuzzy queries generated by the 
method. The software is a Win32-based application 
designed to run in conjunction with any ODBC-compliant 
database management systems.  

The fuzzy rule based classifier computes a solution 
with all rules. The number of rules generated by the 
classifier is very large, which makes difficult the 
interpretation. The pruning procedure presented above 
was thus applied to the fuzzy rule base. The original rule 
base with 75 rules for each class was thus reduced to 10 
rules by selecting the rules where 5.0>VI . The decision 
tree induced by the J4.8 algorithm has 30 rules. 

The simplified rule base was translated into a fuzzy 
query for class 1C . The resulting fuzzy query is very 
simple and represents an understandable customer model 
generated by the fuzzy classifier. 
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4.3. Fuzzy Query Evaluation 

Direct marketing has become one of potential 
applications of data mining techniques, due to the great 
volume of available data from transactional databases 
[18][19]. The objective of direct marketing is to contact 
customers to offer products and services according to 
their specific needs. In a direct marketing campaign, the 
potential customers must be selected from the entire 
database in order to maximize the profit and minimize the 
losses due to an overcharge of marketing material sent to 
wrong customers. Customers’ selection or generally 
“target” selection is thus an important issue in direct 
marketing and several data mining techniques may be 
applied to model customer profile according to the 
objective of the campaign. 

The evaluation of the fuzzy queries generated by the 
proposed approach is done for a target marketing 
scenario, using the Credit Card data set. In this data set, 
the relevant class for the application discussed in this 
section is the class 1C , which represents credit approvals, 
such that the fuzzy query designed for the class 1C  should 
not select a record from the class 2C . 

The Precision and the Recall metrics as a function of 
the membership values of the returned records for the 
training set are shown in Figure 4. The results show that, 
as expected, as grater the membership value is, the higher 
is the Precision of the selected records, but the lower is 
the Recall. An optimal threshold value can thus be chosen 
to allow high Precision and Recall rates. In this 
application, the optimal threshold value must be chosen 
around 0.25. 
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Figure 4: Precision and Recall for the training set. 

The Precision and Recall measures computed by the 
fuzzy weighted query (Fuzzy SQL) with two different 
thresholds values over the testing set are shown in Table 
4. The Precision and Recall metrics computed by the J4.8 
algorithm over the same testing set are also shown in 
Table 4. It can be seen that the fuzzy query results over 
the testing set correspond roughly to the ones computed 
from the training set. Moreover the selection of the 

threshold allows the user to choose between a greater 
Precision and Recall value, while the J4.8 result is fixed. 

The relative importance of Precision and Recall for a 
certain application depends on the user. Experienced users 
can work with high recall and low precision, as they are 
capable to reject irrelevant information. Novice users, on 
the other hand, need higher precision because they lack 
the judgment of the experienced users. 

Table 4: Fuzzy query evaluation in the testing set 

 Precision (%) Recall (%) 
Fuzzy SQL 25.0=δ  92.30 60.60 
Fuzzy SQL 20.0=δ  79.27 88.88 
J4.8 89.10 75.20 
 

In most of applications in data intensive industries, the 
number of returned records is very large. Thus it is 
necessary to select the more suitable record for a given 
application. As it can be seen from Figure 4, the precision 
of the records returned by the fuzzy query with grater 
membership values is very large. 

The decision tree induced by the J4.8 algorithm could 
be used to construct a standard SQL query to retrieve 
potential customers in the data set. Nevertheless, the 
query result would not be ordered as the fuzzy query 
result. 

5. Conclusions 

This work has shown a methodology that automatically 
generates fuzzy queries from a training data set. The 
fuzzy queries are translated from a set of fuzzy weighted 
classifier rules. A pruning procedure to simplify the fuzzy 
rule base and the resulting set of fuzzy queries was also 
proposed.  

This methodology has been implemented in a general-
purpose fuzzy query tool, which can be connected to any 
ODBC-compliant database management system.  

The fuzzy queries are able to retrieve an ordered list of 
the records according to the fuzzy rule based model 
learned by the fuzzy classifier. The Precision and Recall 
analysis of the selected records of the fuzzy query allow 
the user to select an optimal threshold for other data. 

The proposed methodology was developed focusing 
direct marketing application, but may be useful in other 
kind of application such as case based reasoning or 
information retrieval. 

The future directions of this work are to apply this 
methodology in unstructured data for application to text 
mining and web mining. 
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Abstract

We present an extension of the fuzzy c-Means algorithm
that operates on different feature spaces, so-called parallel
universes, simultaneously and also incorporates noise de-
tection. The method assigns membership values of patterns
to different universes, which are then adopted throughout
the training. This leads to better clustering results since
patterns not contributing to clustering in a universe are
(completely or partially) ignored. The method also uses an
auxiliary universe to capture patterns that do not contribute
to any of the clusters in the real universes and therefore
likely represent noise. The outcome of the algorithm are
clusters distributed over different parallel universes, each
modeling a particular, potentially overlapping, subset of the
data and a set of patterns detected as noise. One poten-
tial target application of the proposed method is biological
data analysis where different descriptors for molecules are
available but none of them by itself shows global satisfac-
tory prediction results. In this paper we show how the fuzzy
c-Means algorithm can be extended to operate in parallel
universes and illustrate the usefulness of this method using
results on artificial data sets.

1 Introduction

In recent years, researchers have worked extensively in
the field of cluster analysis, which has resulted in a wide
range of (fuzzy) clustering algorithms [7, 8]. Most of the
methods assume the data to be given in a single (mostly
high-dimensional numeric) feature space. In some appli-
cations, however, it is common to have multiple represen-
tations of the data available. Such applications include bi-
ological data analysis, in which, e. g. molecular similar-
ity can be defined in various ways. Fingerprints are the
most commonly used similarity measure. A fingerprint in
a molecular sense is a binary vector, whereby each bit indi-
cates the presence or absence of a molecular feature. The
similarity of two compounds can be expressed based on

their bit vectors using the Tanimoto coefficient for exam-
ple. Other descriptors encode numerical features derived
from 3D maps, incorporating the molecular size and shape,
hydrophilic and hydrophobic regions quantification, surface
charge distribution, etc. [5]. Further similarities involve the
comparison of chemical graphs, inter-atomic distances, and
molecular field descriptors. However, it has been shown
that often a single descriptor fails to show satisfactory pre-
diction results [13].

Other application domains include web mining where
a document can be described based on its content and
on anchor texts of hyperlinks pointing to it [4]. Parts in
CAD-catalogues can be represented by 3D models, poly-
gon meshes or textual descriptions. Image descriptors can
rely on textual keywords, color information, or other prop-
erties [9].

In the following we denote these multiple represen-
tations, i. e. different descriptor spaces, as Parallel Uni-
verses [11, 16], each of which having representations of
all objects of the data set. The challenge that we are fac-
ing here is to take advantage of the information encoded in
the different universes to find clusters that reside in one or
more universes each modeling one particular subset of the
data. In this paper, we develop an extended fuzzy c-Means
(FCM) algorithm [1] with noise detection that is applica-
ble to parallel universes, by assigning membership values
from objects to universes. The optimization of the objective
function is similar to the original FCM but also includes the
learning of the membership values to compute the impact
of objects to universes.

In the next section, we will discuss in more detail the
concept of parallel universes; section 3 presents related
work. We formulate our new clustering scheme in section 4
and illustrate its usefulness with some numeric examples in
section 5.

2 Parallel Universes

We consider parallel universes to be a set of feature
spaces for a given set of objects. Each object is assigned
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a representation in each single universe. Typically, par-
allel universes encode different properties of the data and
thus lead to different measures of similarity. (For instance,
similarity of molecular compounds can be based on surface
charge distribution or fingerprint representation.) Note, due
to these individual measurements they can also show differ-
ent structural information and therefore exhibit distinctive
clustering. This property differs from the problem setting
in the so-called Multi-View Clustering [3] where a single
universe, i. e. view, suffices for learning but the aim is on
binding different views to improve the classification accu-
racy and/or accelerating the learning process.

Note, the concept of parallel universes is not related
to Subspace Clustering [10], even though it seems so at
first. Subspace clustering algorithms seek to identify dif-
ferent subspaces, i. e. subsets of input features, in a dataset.
This becomes particularly useful when dealing with high-
dimensional data, where often, many dimensions are irrel-
evant and can mask existing clusters in noise. The main
goal of such algorithms is therefore to uncover clusters and
subspaces containing only a small, but dense fraction of the
data, whereas the clustering in parallel universes is given
the definition of all data in all universes and the goal is to
exploit this information.

The objective for our problem definition is on identifying
clusters located in different universes whereby each cluster
models a subset of the data based on some underlying prop-
erty.

Since standard clustering techniques are not able to cope
with parallel universes, one could either restrict the analysis
to a single universe at a time or define a descriptor space
comprising all universes. However, using only one partic-
ular universe omits information encoded in the other repre-
sentations and the construction of a joint feature space and
the derivation of an appropriate distance measure are cum-
bersome and require great care as it can introduce artifacts.

3 Related Work

Clustering in parallel universes is a relatively new field
of research. In [9], the DBSCAN algorithm is extended and
applied to parallel universes. DBSCAN uses the notion of
dense regions by means of core objects, i. e. objects that
have a minimum number k of objects in their (ε-) neighbor-
hood. A cluster is then defined as a set of (connected) dense
regions. The authors extend this concept in two different
ways: They define an object as a neighbor of a core object
if it is in the ε-neighborhood of this core object either (1) in
any of the representations or (2) in all of them. The clus-
ter size is finally determined through appropriate values of
ε and k. Case (1) seems rather weak, having objects in one
cluster even though they might not be similar in any of the
representational feature spaces. Case (2), in comparison,

is very conservative since it does not reveal local clusters,
i. e. subsets of the data that only group in a single universe.
However, the results in [9] are promising.

Another clustering scheme called “Collaborative fuzzy
clustering” is based on the FCM algorithm and was intro-
duced in [12]. The author proposes an architecture in which
objects described in parallel universes can be processed to-
gether with the objective of finding structures that are com-
mon to all universes. Clustering is carried out by applying
the c-Means algorithm to all universes individually and then
by exchanging information from the local clustering results
based on the partitioning matrices. Note, the objective func-
tion, as introduced in [12], assumes the same number of
clusters in each universe and, moreover, a global order on
the clusters which is very restrictive due to the random ini-
tialization of FCM.

A supervised clustering technique for parallel universes
was given in [11]. It focuses on a model for a particu-
lar (minor) class of interest by constructing local neighbor-
hood histograms, so-called Neighborgrams for each object
of interest in each universe. The algorithm assigns a quality
value to each Neighborgram and greedily includes the best
Neighborgram, no matter from which universe it stems, in
the global prediction model. Objects that are covered by
this Neighborgram are finally removed from consideration
in a sequential covering manner. This process is repeated
until the global model has sufficient predictive power.

Blum and Mitchell [4] introduced co-training as a semi-
supervised procedure whereby two different hypotheses are
trained on two distinct representations and then bootstrap
each other. In particular they consider the problem of classi-
fying web pages based on the document itself and on anchor
texts of inbound hyperlinks. They require a conditional in-
dependence of both universes and state that each representa-
tion should suffice for learning if enough labeled data were
available. The benefit of their strategy is that (inexpensive)
unlabeled data augment the (expensive) labeled data by us-
ing the prediction in one universe to support the decision
making in the other.

Other related work includes reinforcement cluster-
ing [15] and extensions of partitioning methods—such as
k-Means, k-Medoids, and EM—and hierarchical, agglom-
erative methods, all in [3].

4 Clustering Algorithm

In this section, we introduce all necessary notation, re-
view the FCM [1, 6] algorithm and formulate a new ob-
jective function that is suitable to be used for parallel uni-
verses. The technical details, i. e. the derivation of the ob-
jective function, can be found in the appendix.

In the following, we consider U , 1 ≤ u ≤ U , par-
allel universe, each having representational feature vec-
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tors for all objects ~xi,u = (xi,u,1, . . . , xi,u,a, . . . xi,u,Au)
with Au the dimensionality of the u-th universe. We de-
pict the overall number of objects as |T |, 1 ≤ i ≤ |T |.
We are interested in identifying cu clusters in universe
u. We further assume appropriate definitions of distance
functions for each universe du (~wk,u, ~xi,u)2 where ~wk,u =
(~wk,u,1, . . . , ~wk,u,a, . . . ~wk,u,Au) denotes the k-th prototype
in the u-th universe.

We confine ourselves to the Euclidean distance in the fol-
lowing. In general, there are no restrictions to the distance
metrics other than the differentiability. In particular, they
do not need to be of the same type in all universes. This is
important to note, since we can use the proposed algorithm
in the same feature space, i. e. ~xi,u1 = ~xi,u2 for any u1 and
u2, but different distance measure across the universes.

4.1 Formulation of new objective function

A standard FCM algorithm relies on one feature space
only and minimizes the accumulated sum of distances be-
tween patterns ~xi and cluster centers ~wk, weighted by the
degree of membership to which a pattern belongs to a clus-
ter. We refer here to an objective function that also includes
noise detection [6]. Note that we omit the subscript u here,
as we consider only one universe:

Jm =
|T |∑
i=1

c∑
k=1

vm
i,k d (~wk, ~xi)

2

+ δ2

|T |∑
i=1

(
1−

c∑
k=1

vi,k

)m

. (1)

The coefficient m ∈ (1,∞) is a fuzzyfication parameter,
and vi,k the respective value from the partition matrix, i. e.
the degree to which pattern ~xi belongs to cluster k. The
last term serves as a noise cluster; all objects have an fixed,
user-defined distance δ2 to it. Objects that are not close to
any cluster center ~wk are therefore detected as noise.

This function is subject to minimization under the con-
straint

∀ i :
c∑

k=1

vi,k ≤ 1 , (2)

requiring that the coverage of any pattern i needs to accu-
mulate to at most 1 (the remainder to 1 represents the mem-
bership to the noise cluster).

The above objective function assumes all cluster candi-
dates to be located in the same feature space and is therefore
not directly applicable to parallel universes. To overcome
this, we introduce a matrix (zi,u), 1 ≤ i ≤ |T |, 1 ≤ u ≤ U ,
encoding the membership of patterns to universes. A value
zi,u close to 1 denotes a strong contribution of pattern ~xi to

the clustering in universe u, and a smaller value, a respec-
tively lesser degree. zi,u has to satisfy standard require-
ments for membership degrees: it must accumulate to at
most 1 considering all universes and must be in the unit in-
terval.

The new objective function is given with

Jm,n =
|T |∑
i=1

U∑
u=1

zn
i,u

cu∑
k=1

vm
i,k,udu (~wk,u, ~xi,u)2

+ δ2

|T |∑
i=1

(
1−

U∑
u=1

zi,u

)n

. (3)

Parameter n ∈ (1,∞) allows (analogous to m) to have im-
pact on the fuzzyfication of zi,u: The larger n the more
equal the distribution of zi,u, giving each pattern an equal
impact to all universes. A value close to 1 will strengthen
the composition of zi,u and assign high values to universes
where a pattern shows good clustering behavior and small
values to those where it does not. Note, we now have U
different partition matrices (vi,k) to assign membership de-
grees of objects to cluster prototypes. Similar to the ob-
jective function (1), the last term’s role is to “localize” the
noise and place it in a single auxiliary universe. By assign-
ing patterns to this noise universe, we declare them to be
outliers in the data set. The parameter δ2 reflects the fixed
distance between a virtual cluster in the noise universe and
all data points. Hence, if the minimum distance between a
data point and any cluster in one of the universes becomes
greater than δ2, the pattern is labeled as noise.

As in the standard FCM algorithm, the objective func-
tion has to fulfill side constraints. The coverage of a pattern
among the partitions in each universe must accumulate to 1:

∀ i, u :
cu∑

k=1

vi,k,u = 1 . (4)

This is similar to the constraint of the single universe FCM
in (2) but requires to a strict sum of 1 since we do not have
a noise cluster in each universe.

Additionally, as mentioned above, the membership of a
pattern to different universes has to be at most 1, i. e.

∀ i :
U∑

u=1

zi,u ≤ 1 . (5)

The remainder to 1 encodes the membership to the noise
cluster mentioned above.

The minimization is done with respect to the parameters
vi,k,u, zi,u, and ~wk,u. Since the derivation of the objective
function is more of technical interest, please refer to the
appendix for details.

The optimization splits into three parts. The optimization
of the partition values vi,k,u for each universe; determining
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the membership degrees of patterns to universes zi,u and
finally the adaption of the center vectors of the cluster rep-
resentatives ~wk,u.

The update equations of these parameters are given
in (6), (7), and (8). For the partition values vi,k,u, it fol-
lows

vi,k,u =
1

cu∑̄
k=1

(
du(~wk,u,~xi,u)2

du(~wk̄,u,~xi,u)2

) 1
m−1

. (6)

Note, this equation is independent of the values zi,u and
is therefore identical to the update expression in the single
universe FCM. The optimization with respect to zi,u yields

zi,u =
1

U∑̄
u=1

( ∑cu

k=1
vm

i,k,u
du(~wk,u,~xi,u)2∑cū

k=1
vm

i,k,ū
dū(~wk,ū,~xi,ū)2+δ2

) 1
n−1

, (7)

and update equation for the adaption of the prototype vec-
tors ~wk,u is of the form

wk,u,a =

∑|T |
i=1 zn

i,u vm
i,k,u xi,u,a∑|T |

i=1 zn
i,u vm

i,k,u

. (8)

Thus, the update of the prototypes depends not only on the
partitioning value vi,k,u, i. e. the degree to which pattern i
belongs to cluster k in universe u, but also to zi,u repre-
senting the membership degrees of patterns to the current
universe of interest. Patterns with larger values zi,u will
contribute more to the adaption of the prototype vectors,
while patterns with a smaller degree accordingly to a lesser
extent.

Equipped with these update equations, we can introduce
the overall clustering scheme in the next section.

4.2 Clustering algorithm

Similar to the standard FCM algorithm, clustering is car-
ried out in an iterative manner, involving three steps:

1. Update of the partition matrices (v)

2. Update of the membership degrees (z)

3. Update of the prototypes (~w)

More precisely, the clustering procedure is given as:

(1) Given: Input pattern set described in U parallel uni-
verses: ~xi,u, 1 ≤ i ≤ |T |, 1 ≤ u ≤ U

(2) Select: A set of distance metrics du (·, ·)2, and the
number of clusters for each universe cu, 1 ≤ u ≤ U ,
define parameter m and n

(3) Initialize: Partition parameters vi,k,u with random
values and the cluster prototypes by drawing sam-
ples from the data. Assign equal weight to all mem-
bership degrees zi,u = 1

U .
(4) Train:
(5) Repeat
(6) Update partitioning values vi,k,u according to (6)
(7) Update membership degrees zi,u according to (7)
(8) Compute prototypes ~wi,u using (8)
(9) until a termination criterion has been satisfied

The algorithm starts with a given set of universe defini-
tions and the specification of the distance metrics to use.
Also, the number of clusters in each universe needs to be
defined in advance. The membership degrees zi,u are ini-
tialized with equal weight (line (3)), thus having the same
impact on all universes. The optimization phase in line (5)
to (9) is—in comparison to the standard FCM algorithm—
extended by the optimization of the membership degrees,
line (7). The possibilities for the termination criterion in
line (9) are manifold. One can stop after a certain number
of iterations or use the change of the value of the objective
function (3) between two successive iterations as stopping
criteria. There are also more sophisticated approaches, for
instance the change to the partition matrices during the op-
timization.

Just like the FCM algorithm, this method suffers from
the fact that the user has to specify the number of proto-
types to be found. Furthermore, our approach even requires
the definition of cluster counts per universe. There are nu-
merous approaches to suggest the number of clusters in the
case of the standard FCM, [17, 14, 2] to name but a few.
Although we have not yet studied their applicability to our
problem definition we do believe that some of them can be
adapted to be used in our context as well.

5 Experimental Results

In order to demonstrate this approach, we generated syn-
thetic data sets with different numbers of parallel universes.
For simplicity we restricted the size of a universe to 2 di-
mensions and generated 2 Gaussian distributed clusters per
universe. We used 70% of the data (overall cardinality 2000
patterns) to build groupings by assigning each object to one
of the universes and drawing its features in that universe
according to the distribution of the cluster (randomly pick-
ing one of the two). The features of that object in the other
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Figure 1. Three universes of a synthetic data set. The top figures show only objects that were
generated within the respective universe (using two clusters per universe). The bottom figures show
all patterns; note that most of them (i. e. the ones from the other two universes), are noise in this
particular universe. They also show the patterns that were not assigned to any of the cluster and
represent noise in all of the universes. For clarification we use different shapes for objects that
originate from different universes.

universes were drawn from a uniform distribution, i. e. they
represent noise in these universes. The remaining 30% of
the overall data was generated to be noise in all universes to
test the ability of the algorithm to identify patterns that do
not cluster at all. Figure 1 shows an example data set with
three universes. The top figures show only the objects that
were generated to cluster in the respective universe. They
define the reference clustering. The bottom figures include
all objects, i. e. patterns that cluster in any of the universes
plus 30% noise, and show the universes as they are pre-
sented to the clustering algorithm. In this example, when
looking solely at one universe, about 3/4 of the data does
not contribute to clustering and therefore are noise in that
universe1.

To compare the results we applied the FCM algorithm
with an auxiliary noise cluster as presented in [6] to the joint
feature space of all universes and set the number of desired
clusters to the overall number of generated clusters. Thus,
the numbers of dimensions and clusters were two times the
number of universes. In order to test the ability of noise
detection we also applied the fuzzy clustering algorithm for
parallel universes without noise universe [16]. The objec-
tive function is similar to (3) but with no explicit notion of

1More precisely 77% which is 2/3 of 70% clustering in other universes
plus 30% overall noise.

noise. The algorithm partitions the data such that each pat-
tern is assigned to one of the clusters.

The cluster membership decision for the single-universe
FCM is based on the highest value of the partition val-
ues, i. e. the cluster to a pattern i is determined by k̄ =
arg max1≤k≤c{vi,k}. If this value is less than the mem-
bership to the noise cluster, vi,k̄ < 1−

∑cu

k vi,k, the pattern
is labeled as noise.

When the universe information is taken into account,
a cluster decision is based on the memberships to uni-
verses zi,u and memberships to clusters vi,k,u. The “win-
ning” universe is determined by ū = arg max1≤u≤U{zi,u}.
If this value is less than the membership degree to the
noise universe, zi,ū < 1 −

∑U
u zi,u, the pattern is la-

beled as noise, otherwise the cluster is calculated as k̄ =
arg max1≤k≤cū{vi,k,cū}.

We used the following quality measure to compare dif-
ferent clustering results [9]:

QK(C) =
∑

Ci∈C

|Ci|
|T |

· (1− entropyK(Ci)) ,

where K is the reference clustering, i. e. the clusters as gen-
erated, C the clustering to evaluate, and entropyK(Ci) the
entropy of cluster Ci with respect to K. This function is 1
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Figure 2. Clustering quality for 3 different
data sets. The number of universes ranges
from 2 to 4 universes. Note how the clus-
ter quality of the joint feature space drops
sharply whereas the parallel universe ap-
proach seems less affected. An overall de-
cline of cluster quality is to be expected since
the number of clusters to be detected in-
creases.

if C equals K and 0 if all clusters are completely puzzled
such that they all contain an equal fraction of the clusters
in K or no clusters are detected at all. Thus, the higher the
value, the better the clustering.

Figure 2 summarizes the quality values for 3 experiments
compared to the FCM with noise detection [6] and the fuzzy
clustering in parallel universes with no noise handling [16].
The number of universes ranges from 2 to 4. Clearly, for
this data set, our algorithm takes advantage of the informa-
tion encoded in different universes and identifies the ma-
jor parts of the original clusters. However, when applying
FCM to the joint feature space, most of the data was labeled
as noise. It was noticeable, that the noise detection (30%
of the data was generated such that it does not cluster in
any universe) decreased when having more universes since
the number of clusters—and therefore the chance to “hit”
one of them when drawing the features of a noise object—
increased for this artifical data. As a result, the difference
in quality between our new clustering algorithm which al-
lows noise detection and the clustering algorithm that forces
a cluster prediction declines when having more universes.
This effect occurs no matter how carefully the noise dis-
tance parameter δ2 is chosen.

However, if we have only few universes, the difference
is very obvious. Figure 3 visually demonstrates the clus-
ters from the foregoing example as they are determined by
the fuzzy c-Means algorithm in parallel universes (the three

top figures) and our new algorithm, i. e. with noise detec-
tion (bottom figures). The figures show only the patterns
that build clusters in the respective universe; other patterns,
either covered by clusters in the remaining universes or de-
tected as noise, are filtered out. Note how the clusters in the
top figures are spread and contain patterns that obviously
do not make much sense for this clustering. This is due to
the fact that the algorithm is not allowed to declare such
patterns as outliers: each pattern must be assigned to a clus-
ter. The bottom figures, in comparison, show the clusters
as round-shaped, dense regions. They have been generated
using the new objective function. Patterns that in the top
figures distort the clusters are not included here. It shows
nicely that the algorithm does not force a cluster prediction
and will recognize these patterns as being noise.

We chose this kind of data generation to test the ability
to detect clusters that are blurred by noise. Particularly in
biological data analysis it is common to have noisy data for
which different descriptors are available and each by itself
exhibits only little clustering power. Obviously this is by
no means proof that the method will always detect clusters
spread out over parallel universes but these early results are
quite promising.

6 Conclusion

We considered the problem of unsupervised clustering in
parallel universes, i. e. problems where multiple representa-
tions are available for each object. We developed an exten-
sion of the fuzzy c-Means algorithm with noise detection
that uses membership degrees to model the impact of ob-
jects to the clustering in a particular universe. By incorpo-
rating these membership values into the objective function,
we were able to derive update equations which minimize the
objective with respect to these values, the partition matrices,
and the prototype center vectors. In order to model the con-
cept of noise, i. e. patterns that apparently are not contained
in any of the cluster, we introduced an auxiliary noise uni-
verse that has one single cluster to which all objects have a
fixed, pre-defined distance. Patterns that are not covered by
any of the clusters will get assigned a high membership to
this universe and can therefore be revealed as noise.

The clustering algorithm itself works in an iterative man-
ner using the above update equations to compute a (local)
minimum. The result are clusters located in different par-
allel universes, each modeling only a subset of the overall
data and ignoring data that do not contribute to clustering in
a universe.

We demonstrated that the algorithm performs well on a
synthetic data set and nicely exploits the information of hav-
ing different universes.

Further studies will concentrate on the overlap of clus-
ters. The proposed objective function rewards clusters that
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Figure 3. The top figures show the clusters as they are found when applying the algorithm with
no noise detection [16]. The bottom figures show the clusters found by the algorithm using noise
detection. While the clusters in the top figures contain patterns that do not appear natural for this
clustering, the clustering with noise detection reveals those patterns and builds up clear groupings.

only occur in one universe. Objects that cluster well in more
than one universe could possibly be identified when having
balanced membership values to the universes but very un-
balanced partitioning values for the cluster memberships.

Other studies will focus on the applicability of the pro-
posed method to real world data and heuristics that adjust
the number of clusters per universe.
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Appendix

In order to compute a minimum of the objective func-
tion (3) with respect to (4) and (5), we exploit a Lagrange
technique to merge the constrained part of the optimization
problem with the unconstrained one. Note we skip the extra
notation of the noise universe in (3) as one can think of an
additional universe, i. e. the number of universe is U + 1,
that has one cluster to which all patterns have a fixed dis-
tance of δ2. The derivation can then be applied as follows.

It leads to a new objective function Fi that we minimize
for each pattern ~xi individually,

Fi =
U∑

u=1

zn
i,u

cu∑
k=1

vm
i,k,udu (~wk,u, ~xi,u)2 (9)

+
U∑

u=1

µu

(
1−

cu∑
k=1

vi,k,u

)
+ λ

(
1−

U∑
u=1

zi,u

)
.

The parameters λ and µu, 1 ≤ u ≤ U , denote the Lagrange
multiplier to take (4) and (5) into account. The necessary
conditions leading to local minima of Fi read as

∂Fi

∂zi,u
= 0,

∂Fi

∂vi,k,u
= 0,

∂Fi

∂λ
= 0,

∂Fi

∂µu
= 0 , (10)

1 ≤ u ≤ U, 1 ≤ k ≤ cu.

In the following we will derive update equations for the z
and v parameters. Evaluating the first derivative of the equa-
tions in (10) yields the expression

∂Fi

∂zi,u
= n zn−1

i,u

cu∑
k=1

vm
i,k,udu (~wk,u, ~xi,u)2 − λ = 0,

and hence

zi,u =
(

λ

n

) 1
n−1

(
1∑cu

k=1 vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

.

(11)

ICDM 2005 Workshop on Computational Intelligence in Data Mining 35



We can rewrite the above equation

(
λ

n

) 1
n−1

= zi,u

(
cu∑

k=1

vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

. (12)

From the derivative of Fi w. r. t. λ in (10), it follows

∂Fi

∂λ
= 1−

U∑
u=1

zi,u = 0

U∑
u=1

zi,u = 1 , (13)

which returns the normalization condition as in (5). Using
the formula for zi,u in (11) and integrating it into expres-
sion (13) we compute

U∑
u=1

(
λ

n

) 1
n−1

(
1∑cu

k=1 vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

= 1

(
λ

n

) 1
n−1 U∑

u=1

(
1∑cu

k=1 vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

= 1.(14)

We make use of (12) and substitute
(

λ
n

) 1
n−1 in (14). Note,

we use ū as parameter index of the sum to address the fact
that it covers all universes, whereas u denotes the current
universe of interest. It follows

1 = zi,u

(
cu∑

k=1

vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

×
U∑

ū=1

(
1∑cū

k=1 vm
i,k,ūdū (~wk,ū, ~xi,ū)2

) 1
n−1

,

which can be simplified to

1 = zi,u

U∑
ū=1

(∑cu

k=1 vm
i,k,udu (~wk,u, ~xi,u)2∑cū

k=1 vm
i,k,ūdū (~wk,ū, ~xi,ū)2

) 1
n−1

,

and returns an immediate update expression for the mem-
bership zi,u of pattern i to universe u (see also (7)):

zi,u =
1

U∑̄
u=1

(∑cu

k=1
vm

i,k,u
du(~wk,u,~xi,u)2∑cū

k=1
vm

i,k,ū
dū(~wk,ū,~xi,ū)2

) 1
n−1

.

Analogous to the calculations above we can derive the
update equation for value vi,k,uwhich represents the par-
titioning value of pattern i to cluster k in universe u.
From (10) it follows

∂Fi

∂vi,k,u
= zn

i,u m vm−1
i,k,u du (~wk,u, ~xi,u)2 − µu = 0,

and thus

vi,k,u =

(
µu

m zn
i,u du (~wk,u, ~xi,u)2

) 1
m−1

,(15)

(
µu

m zn
i,u

) 1
m−1

= vi,k,u

(
du (~wk,u, ~xi,u)2

) 1
m−1

.(16)

Zeroing the derivative of Fi w. r. t. µu will result in condi-
tion (4), ensuring that the partition values sum to 1, i. e.

∂Fi

∂µu
= 1−

cu∑
k=1

vi,k,u = 0 . (17)

We use (15) and (17) to come up with

1 =
cu∑

k=1

(
µu

m zn
i,u du (~wk,u, ~xi,u)2

) 1
m−1

,

1 =

(
µu

m zn
i,u

) 1
m−1 cu∑

k=1

(
1

du (~wk,u, ~xi,u)2

) 1
m−1

.(18)

Equation (16) allows us to replace the first multiplier
in (18). We will use the k̄ notation to point out that the
sum in (18) considers all partitions in a universe and k to
denote one particular cluster coming from (15),

1 = vi,k,u

(
du (~wk,u, ~xi,u)2

) 1
m−1

×
cu∑

k̄=1

(
1

du

(
~wk̄,u, ~xi,u

)2
) 1

m−1

1 = vi,k,u

cu∑
k̄=1

(
du (~wk,u, ~xi,u)2

du

(
~wk̄,u, ~xi,u

)2
) 1

m−1

Finally, the update rule for vi,k,u arises as (see also 6):

vi,k,u =
1

cu∑̄
k=1

(
du(~wk,u,~xi,u)2

du(~wk̄,u,~xi,u)2

) 1
m−1

.

For the sake of completeness we also derive the update
rules for the cluster prototypes ~wk,u. We confine ourselves
to the Euclidean distance here, assuming the data is normal-
ized2:

du (~wk,u, ~xi,u)2 =
Au∑
a=1

(wk,u,a − xi,u,a)2 , (19)

2The derivation of the updates using other than the Euclidean distance
works in a similar manner.
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with Au the number of dimensions in universe u and wk,u,a

the value of the prototype in dimension a. xi,u,a is the value
of the a-th attribute of pattern i in universe u, respectively.
The necessary condition for a minimum of the objective
function (3) is of the form ∇~wk,u

J = 0. Using the Eu-
clidean distance as given in (19) we obtain

∂Jm,n

∂wk,u,a
= 0 = 2

|T |∑
i=1

zn
i,u vm

i,k,u (wk,u,a − xi,u,a)

wk,u,a

|T |∑
i=1

zn
i,u vm

i,k,u =
|T |∑
i=1

zn
i,u vm

i,k,u xi,u,a

wk,u,a =

∑|T |
i=1 zn

i,u vm
i,k,u xi,u,a∑|T |

i=1 zn
i,u vm

i,k,u

,

which is also given with (8).
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Abstract 
 
 In this paper, we clearly demonstrate that genetics-based 
multiobjective rule selection can significantly improve the 
accuracy-complexity tradeoff curve of extracted rule sets 
for classification problems. First a prespecified number of 
rules are extracted from numerical data with continuous 
attributes using a heuristic rule extraction criterion. Then 
genetics-based multiobjective rule selection is applied to the 
extracted rule set to find a number of non-dominated rule 
subsets with respect to the classification accuracy and the 
number of rules. Experimental results clearly show that 
multiobjective rule selection finds a number of smaller rule 
subsets with higher accuracy than heuristically extracted 
rule sets. That is, the accuracy-complexity tradeoff curve is 
improved by multiobjective rule selection. 
 
1. Introduction 
 
 Almost all real-world decision making problems involve 
multiple objectives. These objectives usually conflict with 
each other. In the case of knowledge extraction, we want to 
maximize the accuracy of extracted rules. At the same time, 
we want to minimize their complexity (i.e., maximize their 
interpretability). Evolutionary multiobjective optimization 
(EMO) is an active research area in the field of evolutionary 
computation (see Deb [1] and Coello et al. [2]). The main 
advantage of EMO approaches over conventional 
optimization techniques is that a number of non-dominated 
solutions are simultaneously obtained by their single run. 
The obtained non-dominated solutions help the decision 
maker to understand the tradeoff structure between 
conflicting objectives (e.g., through their visualization). 
Such knowledge about the tradeoff structure in turn helps 
the decision maker to choose the final solution from the 
obtained non-dominated ones.  
 In some conventional (i.e., non-evolutionary) approaches 
to multiobjective optimization, the decision maker is 
supposed to integrate multiple objectives into a single scalar 
objective function by assigning a relative weight to each 
objective. The assessment of the relative weight, however, 
is usually very difficult because the decision maker has no a 

priori information about the tradeoff between conflicting 
objectives. For example, it is very difficult to assign relative 
weights to the two major goals in knowledge extraction: 
accuracy maximization and complexity minimization. In 
other conventional approaches, the decision maker is 
requested to assign the target value to each objective. The 
specification of the target value is also difficult for the 
decision maker. For example, it is not easy to specify the 
target values for the classification accuracy and the number 
of extracted rules before the decision maker knows the 
tradeoff structure between the accuracy and the complexity 
of rule sets for a particular classification problem at hand. 
 Recently EMO approaches have been employed in some 
studies on modeling and classification. For example, 
Kupinski & Anastasio [3] used an EMO algorithm to 
generate non-dominated neural networks on a receiver 
operating characteristic curve. Gonzalez et al. [4] generated 
non-dominated radial basis function networks of different 
sizes. Abbass [5] used a memetic EMO algorithm (i.e., a 
hybrid EMO algorithm with local search) to speed up the 
back-propagation algorithm where multiple neural networks 
of different sizes were evolved to find an appropriate 
network structure. Non-dominated neural networks were 
combined into a single ensemble classifier in [6]-[8]. The 
use of EMO algorithms to design ensemble classifiers was 
also proposed in Ishibuchi & Yamamoto [9] where multiple 
fuzzy rule-based classifiers of different sizes were generated. 
In some studies on fuzzy rule-based systems [10]-[17], 
EMO algorithms were used to analyze the tradeoff between 
accuracy and interpretability. 
 In this paper, we intend to clearly demonstrate the 
effectiveness of EMO approaches to knowledge extraction 
from numerical data for classification problems with many 
continuous attributes. First we briefly explain some basic 
concepts in multiobjective optimization in Section 2. Next 
we explain our EMO approach to knowledge extraction. 
Our approach consists of two stages: heuristic rule 
extraction (i.e., data mining stage) and genetics-based 
multiobjective rule selection (i.e., optimization stage). 
These two stages are described in Section 3 and Section 4, 
respectively. In the second stage of our EMO approach, 
knowledge extraction is formulated as a two-objective rule 
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selection problem. The two objectives are to maximize the 
classification accuracy and to minimize the number of rules. 
An EMO algorithm is employed to efficiently find a number 
of non-dominated rule sets with respect to these two 
objectives for classification problems with many continuous 
attributes. In Section 5, obtained non-dominated rule sets 
are compared with heuristically extracted rule sets. Finally 
Section 6 concludes this paper. 
 
2. Multiobjective Optimization 
 
 We explain some basic concepts in multiobjective 
optimization using the following k-objective problem: 

  Minimize ))(...,),(),(( 21 yyyz kfff= ,     (1) 
  subject to Yy∈ ,             (2) 

where z is the objective vector, y is the decision vector, and 
Y is the feasible region in the decision space. Since the k 
objectives usually conflict with each other, there is no 
absolutely optimal solution *y  ( Yy ∈* ) that satisfies the 
following relation with respect to all objectives: 

  i∀  }:)(min{)( * Yyyy ∈= ii ff .       (3) 

 In general, multiobjective optimization problems have a 
number of non-dominated (i.e., Pareto-optimal) solutions. 
Now we briefly explain the concept of Pareto-optimality. 
Let a and b be two feasible solutions of the k-objective 
problem in (1)-(2). When the following condition holds, a 
can be viewed as being better than b: 

  i∀  )()( ba ii ff ≤   and  j∃  )()( ba jj ff < .   (4) 

In this case, we say that a dominates b (equivalently b is 
dominated by a). This dominance relation between a and b 
in (4) is sometimes denoted as ba p . 
 When b is not dominated by any other feasible solutions, 
b is referred to as a non-dominated (i.e., Pareto-optimal) 
solution of the k-objective problem in (1)-(2). That is, b is a 
Pareto-optimal solution when there is no feasible solution a 
that satisfies ba p . The set of all Pareto-optimal solutions 
forms a tradeoff surface in the k-dimensional objective 
space. This tradeoff surface in the objective space is 
referred to as the Pareto-front. Various EMO algorithms 
have been proposed to efficiently find a number of Pareto-
optimal (or near Pareto-optimal) solutions that are 
uniformly distributed on the Pareto-front [1]-[2]. 
 
3. Heuristic Extraction of Classification Rules 
 
 Our EMO approach to knowledge extraction consists of 
two stages: heuristic rule extraction and genetics-based 
multiobjective rule selection. In the first stage (i.e., data 
mining stage), a prespecified number of promising rules are 
efficiently extracted in a heuristic manner. Then a number 

of non-dominated rule sets, which are subsets of the 
extracted rules, are found by an EMO algorithm in the 
second stage (i.e., optimization stage). These two stages are 
explained in this section and the next section, respectively.  
 Let us assume that we have m training (i.e., labeled) 
patterns =px )...,,( 1 pnp xx , mp ...,,2,1=  from M classes 
in the n-dimensional continuous pattern space where pix  is 
the attribute value of the p-th training pattern for the i-th 
attribute ( ni ...,2,1,= ). We denote these training patterns 
by D (i.e., }...,,{ 1 mD xx= ). We also denote training 
patterns from Class h as )Class( hD  where Mh ...,,2,1= . 
 For our n-dimensional M-class classification problem, 
we use the following classification rule: 

  Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA   
       then Class qC  with qCF ,     (5) 
where qR  is the label of the q-th rule, )...,,( 1 nxx=x  is an 
n-dimensional pattern vector, qiA  is an antecedent interval, 

qC  is a class label, and qCF  is a rule weight (i.e., certainty 
grade). Each antecedent condition “ ix  is qiA ” means the 
inclusion relation qii Ax ∈  (i.e., the inequality relation 

U
qiiL

qi AxA ≤≤  where ],[ U
qi

L
qiqi AAA = ). We denote the 

antecedent part of the classification rule qR  in (5) by the 
interval vector qA  where )...,,( 1 qnqq AA=A . Thus qR  is 
denoted as “ qq CClass⇒A ”. 
 The first step to heuristic rule extraction is the 
discretization of the domain interval of each continuous 
attribute into antecedent intervals. Since we usually have no 
a priori information about an appropriate granularity of the 
discretization for each attribute, we simultaneously use 
multiple partitions with different granularities (i.e., from 
coarse partitions into a few intervals to fine partitions into 
many intervals). This is one characteristic feature of our 
approach to knowledge extraction. Since we simultaneously 
use multiple partitions with different granularities, we need 
no heuristic criteria to compare different granularities (i.e., 
to determine the number of intervals for each attribute). In 
computational experiments, we use five partitions into K 
intervals where =K 1, 2, 3, 4, 5 (see Fig. 1). It should be 
noted that =K 1 corresponds to the whole domain interval. 
 

 

K = 1
K = 2
K = 3
K = 4
K = 5

 
Fig. 1. Five partitions with different granularities used in our 
computational experiments. 

 
 As shown in Fig. 1, the whole domain interval is divided 
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into K intervals. To specify )1( −K  cutting points for each 
attribute, we use an optimal splitting method [18] based on 
the class entropy measure [19]: 
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where )...,,( 1 KAA  is K intervals generated by the 
discretization of an attribute, jD  is the set of training 
patterns in the interval jA , and jhD  is the set of training 
patterns from Class h in jD . Using the optimal splitting 
method [18], we can efficiently find the optimal )1( −K  
cutting points that minimize the class entropy measure in 
(6). In this manner, we can obtain multiple partitions for 
various values of K for each attribute. 
 When we use five partitions with =K 1, 2, 3, 4, 5 in Fig. 
1, we have 15 antecedent intervals for each attribute. This 
means that we have n15  combinations of the antecedent 
intervals for our n-dimensional classification problem. Such 
a combination corresponds to the antecedent part of each 
classification rule in (5). 
 The next step to heuristic rule extraction is the 
determination of the consequent class qC  and the rule 
weight qCF  for each combination qΑ  of the antecedent 
intervals. This is performed by calculating the confidence of 
the classification rule “ hq Class⇒A ” for each class h (see 
[20] for the confidence measure). Let )( qD A  be the set of 
compatible training patterns with the antecedent part qA : 

  }...,,|{)( 11 qnpnqppq AxAxD ∈∈= xA .     (7) 

When )( qD A  is empty, we do not generate any rule with 
the antecedent part qA . 
 The confidence of “ hq Class⇒A ” is calculated as  

  )()Class()()Class( qqq DhDDhc AAA I=⇒ , 

                 Mh ...,,2,1= .  (8) 

The confidence of “ hq Class⇒A ” in (8) is the ratio of 
compatible training patterns with qA  from Class h to all 
the compatible training patterns. Another measure called 
support has also been frequently used in the literature [20]. 
The support of “ hq Class⇒A ” is calculated as  

  DhDDhs qq )Class()()Class( IAA =⇒ , 

                  Mh ...,,2,1= .  (9) 

 The consequent class qC  is specified as the class with 
the maximum confidence: 

}1,2,...,|)Class({max)Class( MhhcCc qqq =⇒=⇒ AA . 
                      (10) 

We have the same consequent class as in (10) even when 

we use the support in (9) instead of the confidence in (8). 
The consequent class qC  is the dominant class among the 
compatible training patterns with the antecedent part qA . 
As we have already mentioned, we do not generate any rule 
with the antecedent part qA  when there is no compatible 
training patterns with qA .  
 We specify the rule weight qCF  by the confidence as 

  )Class( qqq CcCF ⇒= A .           (11) 

The rule weight qCF  is used in the classification phase of 
new patterns in the following manner. When a new pattern 
is to be classified by a rule-based classification system, first 
all compatible rules with the new pattern are found. Then a 
single winner rule with the largest rule weight is identified 
among the compatible rules. Finally the new pattern is 
classified as the consequent class of the winner rule. 
 Using the above-mentioned rule generation procedure, 
we can generate a huge number of classification rules by 
examining the n15  combinations of the antecedent intervals. 
For high-dimensional classification problems, it may be 
impractical to examine all the n15  combinations. Thus we 
only examine short rules with a small number of antecedent 
conditions. It should be noted that the antecedent interval 
corresponding to =K 1 in Fig. 1 is actually equivalent to a 
“don’t care” condition. Thus all don’t care conditions with 
the antecedent interval for =K 1 can be omitted. In this 
paper, the number of antecedent conditions excluding don’t 
care conditions is referred to as the rule length. We only 
examine short rules of length maxL  or less (e.g., =maxL 3). 
This restriction on the rule length is to find simple 
classification rules with high interpretability. 
 We further decrease the number of rules by choosing 
only good rules with respect to a heuristic rule extraction 
criterion. That is, we choose a prespecified number of short 
rules for each class using a heuristic criterion. In our 
computational experiments, we use the following three 
heuristic criteria: 
Support with the minimum confidence level: Each rule is 
evaluated based on its support value when its confidence 
value is larger than the prespecified minimum confidence 
level. This criterion never extracts unqualified rules whose 
confidence values are smaller than the minimum confidence 
level. Five minimum confidence levels (0.5, 0.6, 0.7, 0.8, 
0.9) are examined in computational experiments. 
Product of confidence and support: Each rule is evaluated 
based on the product of its confidence and support values. 
Difference in support: Each rule is evaluated based on the 
difference between its support value and the total support 
value of the other rules with the same antecedent condition 
and different consequent classes. More specifically, the rule 

qR  with the antecedent condition qA  and the consequent 
class qC  is evaluated as follows: 
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This is a modified version of a heuristic rule evaluation 
criterion used in an iterative fuzzy genetics-based machine 
learning algorithm called SLAVE [21]. 
 We choose a prespecified number of promising rules 
with the largest values of each criterion in a greedy manner 
for each class. As we have already mentioned, only short 
rules of length maxL  or less are examined in the heuristic 
rule extraction stage in order to find interpretable rules. 
 
4. Multiobjective Rule Selection 
 
 Let us assume that we have N rules extracted from 
numerical data by heuristic rule extraction in the previous 
section (i.e., MN /  rules for each class). Genetics-based 
multiobjective rule selection is used to find non-dominated 
rule sets from these N rules with respect to the accuracy and 
the complexity (i.e., to find non-dominated subsets of the N 
rules). The accuracy maximization of a rule set S is 
performed by minimizing the error rate on training patterns 
by S. We include the rejection rate into the error rate (i.e., 
training patterns with no compatible rules in S are counted 
among errors in this paper). On the other hand, we measure 
the complexity of the rule set S by the number of rules in S. 
Thus our rule selection problem is formulated as follows: 

  Minimize )(1 Sf  and )(2 Sf ,           (13) 

where )(1 Sf  is the error rate on training patterns by the rule 
set S and )(2 Sf  is the number of rules in S. 
 Any subset S of the N candidate rules can be represented 
by a binary string of length N as 

  NsssS ⋅⋅⋅= 21 ,               (14) 

where 1=js  and 0=js  mean that the j-th candidate rule is 
included in S and excluded from S, respectively. Such a 
binary string is handled as an individual in our EMO 
approach. 
 Since feasible solutions (i.e., subsets of the extracted N 
rules) are represented by binary strings, we can directly 
apply almost all EMO algorithms to our rule selection 
problem in (13) using standard crossover and mutation 
operations. In this paper, we use an elitist non-dominated 
sorting genetic algorithm (NSGA-II) of Deb et al. [22] 
because it is a state-of-the-art well-known EMO algorithm 
with high search ability. 
 The NSGA-II algorithm randomly generates a 
prespecified number of binary strings of length N (say 

popN  strings) as an initial population. Each string is 
evaluated using Pareto ranking and a crowding measure. 

popN  new strings are generated by genetic operations (i.e., 

selection, crossover, and mutation). The generated offspring 
population is merged with the parent population. The next 
population is constructed by choosing popN  best strings 
from the merged population with pop2 N×  strings using 
Pareto ranking and a crowding measure as in the selection 
of parent strings. In this manner, the generation update is 
iterated until a prespecified stopping condition is satisfied. 
Non-dominated strings are chosen from the merged 
population at the final generation. These strings are 
presented to the human user as non-dominated rule sets. See 
Deb et al. [22] for details of the NSGA-II algorithm. 
 In the application of the NSGA-II algorithm to our rule 
selection problem, we use two problem-specific heuristic 
tricks in order to efficiently find small rule sets with high 
accuracy. One trick is biased mutation where a larger 
probability is assigned to the mutation from 1 to 0 than that 
from 0 to 1. This is for efficiently decreasing the number of 
rules in each rule set. The other trick is the removal of 
unnecessary rules, which is a kind of local search. Since we 
use the single winner-based method for classifying each 
pattern by the rule set S, some rules in S may be chosen as 
winner rules for no training patterns. We can remove these 
rules without degrading the first objective (i.e., the number 
of correctly classified training patterns). At the same time, 
the removal of unnecessary rules leads to the improvement 
in the other objectives. Thus we remove all rules that are 
not selected as winner rules for any training patterns from 
the rule set S. The removal of unnecessary rules is 
performed after the first objective is calculated and before 
the second and third objectives are calculated. 
 
5. Computational Experiments 
 
5.1. Settings of Computational Experiments 
 
 We use six data sets in Table 1: Wisconsin breast cancer 
(Breast W), diabetes (Diabetes), glass identification (Glass), 
Cleveland heart disease (Heart C), sonar (Sonar), and wine 
recognition (Wine) data sets. These six data sets are 
available from the UC Irvine machine learning repository 
(http://www.ics.uci.edu/~mlearn/). Data sets with missing 
values are marked by “*” in the third column of Table 1. 
Since we do not use incomplete patterns with missing 
values, the number of patterns in the third column does not 
include those patterns with missing values. All attributes are 
handled as continuous attributes in this paper. 
 We evaluate the performance of our EMO approach in 
comparison with the reported results on the same data sets 
in Elomaa & Rousu [18] where six variants of the C4.5 
algorithm were examined. The performance of each variant 
was evaluated by ten independent executions (with different 
data partitions) of the whole ten-fold cross-validation 
(10CV) procedure (i.e., 10CV10× ) in [18]. We show in the 
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last two columns of Table 1 the best and worst error rates 
on test patterns among the six variants reported in [18] for 
each data set. 
 

Table 1. Data sets used in our computational experiments.  
C4.5 in [18]Data set Attributes Patterns Classes 

 Best    Worst
Breast W   9   683* 2   5.1   6.0
Diabetes   8 768 2 25.0 27.2

Glass   9 214 6 27.3 32.2
Heart C 13   297* 5 46.3 47.9
Sonar 60 208 2 24.6 35.8
Wine 13 178 3   5.6   8.8
* Incomplete patterns with missing values are not included. 

 In this section, we examine the accuracy of extracted 
rules by heuristic rule extraction and non-dominated rule 
sets obtained by genetics-based multiobjective rule 
selection for training patterns and test patterns. When the 
classification accuracy on training patterns is discussed, all 
the given patterns (excluding incomplete patterns with 
missing values) are used in heuristic rule extraction and 
multiobjective rule selection. On the other hand, we use the 
10CV procedure (i.e., 90% training patterns and 10% test 
patterns) when we examine the accuracy on test patterns.  
 We first explain computational experiments for 
examining the accuracy on training patterns where all the 
given patterns are used as training patterns. The accuracy of 
rules is evaluated on the same training patterns. 
 As in Fig. 1, we simultaneously use five partitions for 
each attribute. In the heuristic rule extraction stage, various 
specifications are used as the number of extracted rules for 
each class in order to examine the relation between the 
number of extracted rules and their accuracy. The number 
of extracted rules is specified as 1, 2, 3, 4, 5, 10, 20, 30, 40, 
50, and 100. The three heuristic criteria in Section 3 are 
used in the heuristic rule extraction stage. When multiple 
rules have the same value of a heuristic criterion, those rules 
are randomly ordered (i.e., random tie break). As we have 
already mentioned, the five specifications of the minimum 
confidence level (i.e., 0.5, 0.6, 0.7, 0.8, 0.9) are examined in 
the support criterion with the minimum confidence level.  
 The maximum rule length maxL  is specified as =maxL 2 
for the sonar data set and =maxL 3 for the other data sets. 
That is, candidate rules of length 2 or less are examined for 
the sonar data set while those of length 3 or less are 
examined for the other data sets. We use such a different 
specification because only the sonar data set involves a 
large number of attributes (i.e., it has a huge number of 
possible combinations of antecedent intervals).  
 For each specification of the heuristic rule extraction 
criterion, average results are calculated over 20 runs for 

each data set in order to decrease the possible effect of the 
random tie break. Then we choose the heuristic rule 
extraction criterion from which the best average error rate 
on training patterns is obtained among various criteria in the 
case of 100 rules for each class. The chosen heuristic rule 
extraction criterion is used to extract candidate rules for the 
genetics-based multiobjective rule selection stage. It should 
be noted that a different criterion is chosen for each data set.  
 As candidate rules in multiobjective rule selection, we 
extract 300 rules for each class from training patterns. Thus 
300M rules are used as candidate rules where M is the 
number of classes. The NSGA-II algorithm is applied to the 
extracted 300M rules using the following parameter values 
to find non-dominated rule sets with respect to the two 
objectives of our rule selection problem: 

  Population size: 200 strings, 
  Crossover probability: 0.8 (uniform crossover), 
  Biased mutation probabilities:  
    Mp 300/1)10(m =→   and  =→ )01(mp 0.1, 
  Stopping condition: 5000 generations.  

The extraction of 300M rules and the application of the 
NSGA-II algorithm are executed 20 times for each data set. 
Multiple non-dominated rule sets are obtained from each 
run of the NSGA-II algorithm. We calculate the error rate of 
each rule set on training patterns. Then the average error 
rate is calculated over rule sets with the same number of 
rules among 20 runs. Only when rule sets with the same 
number of rules are found in all the 20 runs, we report the 
average error rate for that number of rules in this section. 
 On the other hand, the 10CV procedure is used for 
examining the accuracy of rules on test patterns. First the 
10CV procedure is iterated three times (i.e., CV103× ) 
using various criteria in heuristic rule extraction. The 
average error rates on test patterns are calculated over the 
three iterations of the 10CV procedure for various 
specifications of a heuristic rule extraction criterion and the 
number of extracted rules. 
 We choose the heuristic rule extraction criterion from 
which the best average error rate on test patterns is obtained 
among various criteria in the case of 100 rules for each class. 
The chosen heuristic rule extraction criterion is used to 
extract candidate rules for the genetics-based multiobjective 
rule selection stage as in the computational experiments for 
examining the accuracy on training patterns. 
 Using the chosen heuristic rule extraction criterion for 
each data set, the 10CV procedure is iterated three times 
(i.e., CV103× ). In each run of CV103×  for each data set, 
300 candidate rules are extracted for each class from 
training patterns. The NSGA-II algorithm is applied to the 
300M candidate rules. The error rate on test patterns is 
calculated for each of the obtained non-dominated rule sets. 
The average error rate on test patterns is calculated for rule 
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sets with the same number of rules over 30 runs in 
CV103× . Only when rule sets with the same number of 

rules are obtained from all the 30 runs, we report the 
average error rate for that number of rules in this section. 
 
5.2. Results on Training Patterns 
 
 In this subsection, we report experimental results on 
training patterns where average error rates are calculated on 
training patterns. 
Wisconsin Breast Cancer Data: Experimental results by 
heuristic rule extraction are summarized in Table 2 where 
the average error rate over 20 runs is shown for each 
combination of a heuristic rule extraction criterion and the 
number of extracted rules for each class. The best error rate 
in each row is indicated by bold face. Since the best result 
for the case of 100 rules for each class is obtained by the 
support with the minimum confidence level 0.6 in Table 2 
(see the last row), this heuristic rule extraction criterion is 
used in genetics-based multiobjective rule selection to 
extract 300 candidate rules for each class. 
 
Table 2. Average error rates on training patterns of extracted rules 
by heuristic rule extraction (Breast W). 

Support with minimum confidence Rules for 
each class 0.5 0.6 0.7 0.8 0.9 

Product Diff.

1 8.78 8.78 8.78 8.78 7.91 7.47 7.50
2 8.71 8.71 8.71 7.03 5.71 6.59 6.59
3 7.03 7.03 7.03 5.56 6.15 4.98 6.44
4 5.83 5.71 5.71 5.71 4.10 4.39 4.74
5 4.98 4.98 4.98 5.27 5.71 6.00 5.23

10 5.56 5.56 5.56 5.83 6.37 6.73 6.73
20 6.76 6.84 6.92 7.04 8.82 8.78 8.78
30 10.40 10.40 10.40 10.40 9.66 9.46 8.40
40 6.49 6.56 6.52 6.60 7.38 7.61 7.61
50 8.17 8.18 8.13 8.20 8.20 7.76 7.78
100 7.22 7.17 7.22 7.26 7.47 7.47 7.47

 
 
 In Fig. 2, we compare the average error rates between 
heuristic rule extraction and multiobjective rule selection. 
All the experimental results in Table 2 by heuristic rule 
extraction are depicted by closed circles whereas the 
average error rates of selected rules by multiobjective rule 
selection are shown by open circles. It should be noted that 
the horizontal axis in Fig. 2 is the total number of rules 
while the first column of Table 2 shows the number of rules 
for each class. From Fig. 2, we can see that smaller rule sets 
with lower error rates are found by multiobjective rule 
selection than heuristic rule extraction. That is, 
multiobjective rule selection improves the accuracy-
complexity tradeoff curve in Fig. 2. We can observe a clear 
tradeoff structure between the average error rate and the 

number of rules from the experimental results by 
multiobjective rule selection (i.e., open circles in Fig. 2). 
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Fig. 2. Comparison between heuristic rule extraction and genetics-
based multiobjective rule selection with respect to the average 
error rates on training patterns (Breast W). 

 
Diabetes Data: Experimental results by heuristic rule 
extraction are summarized in Table 3. An interesting 
observation in Table 3 (and also in Table 2) is that the 
increase in the number of extracted rules does not always 
lead to the improvement in the average error rates. Another 
interesting observation from the comparison between Table 
2 and Table 3 is that good results are obtained from 
different heuristic rule extraction criteria (e.g., see the sixth 
column with the label “0.9” of each table). That is, the 
choice of an appropriate criterion is problem-dependent. 
 
Table 3. Average error rates on training patterns of extracted rules 
by heuristic rule extraction (Diabetes). 

Support with minimum confidence Rules for 
each class 0.5 0.6 0.7 0.8 0.9 

Product Diff.

1 32.68 36.59 30.99 36.33 62.63 28.39 29.43
2 31.38 32.16 23.57 36.33 59.90 23.96 28.39
3 31.77 22.79 23.28 36.33 58.33 23.18 28.39
4 32.68 22.79 23.44 36.33 49.87 22.79 24.09
5 33.85 23.05 23.44 30.86 49.78 22.79 23.44

10 29.69 27.60 22.27 30.73 47.33 26.95 22.46
20 31.51 24.74 22.01 28.36 38.63 24.48 22.14
30 30.83 24.55 22.01 26.43 33.52 22.79 22.87
40 28.65 21.88 22.79 24.35 32.29 22.66 22.79
50 27.47 22.66 22.79 24.48 30.08 22.66 23.31
100 26.95 23.70 23.70 23.57 26.56 23.96 23.78

 
 
 In the same manner as Fig. 2, we compare heuristic rule 
extraction with multiobjective rule selection in Fig. 3. 
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Whereas multiobjective rule selection does not always 
outperform heuristic rule selection when the number of rule 
is small, it finds good rule sets with 8-20 rules. The 
relatively poor performance of multiobjective rule selection 
in the case of small rule sets with 2-6 rules is due to the use 
of candidate rules extracted by the support criterion with the 
minimum confidence level 0.8. As shown in Table 3, the 
performance of this criterion is not good when the number 
of extracted rules is small. Better results will be obtained 
from multiobjective rule selection if we use other criteria 
such as the product of confidence and support to extract 
candidate rules. 
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Fig. 3. Comparison between heuristic rule extraction and genetics-
based multiobjective rule selection with respect to the average 
error rates on training patterns (Diabetes). 

 
Glass Identification Data: In the same manner as Fig. 2 
and Fig. 3, we compare heuristic rule extraction with 
multiobjective rule selection in Fig. 4. We can see from Fig. 
4 that much better results are obtained from multiobjective 
rule selection than heuristic rule extraction. That is, much 
better tradeoffs between the accuracy and the complexity 
are obtained from multiobjective rule selection. 
Cleveland Heart Disease Data: In the same manner as 
Figs. 2-4, experimental results are summarized in Fig. 5. 
Multiobjective rule extraction does not always outperform 
heuristic rule extraction when the number of rules is small. 
Multiobjective rule selection, however, finds much better 
rule sets than heuristic rule selection when the number of 
rules is large (e.g., 15-50 rules). We obtained a similar 
observation in Fig. 3 for the Diabetes data set. 
Sonar Data: Experimental results are summarized in Fig. 6. 
We can see that much lower error rates are obtained by 
multiobjective rule selection than heuristic rule extraction 
for those rule sets with 6-15 rules. 
Wine Data: Experimental results are summarized in Fig. 7. 

All the 20 runs of the NSGA-II algorithm find rule sets with 
only 5 rules that can correctly classify all the given patterns. 
On the other hand, 30 rules can not correctly classify all the 
given patterns in the case of heuristic rule extraction. 
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Fig. 4. Comparison between heuristic rule extraction and genetics-
bases multiobjective rule selection with respect to the average 
error rates on training patterns (Glass). 
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Fig. 5. Comparison between heuristic rule extraction and genetics-
bases multiobjective rule selection with respect to the average 
error rates on training patterns (Heart C). 

 
5.3. Results on Test Patterns 
 
 In this subsection, we report experimental results on test 
patterns where average error rates on test patterns are 
calculated by three iterations of the 10CV procedure. 
Heuristic rule extraction and genetics-based multiobjective 
rule selection are compared with each other. Our 
experimental results are also compared with the reported 
results of the C4.5 algorithm in Elomaa and Rousu [18]. 
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Fig. 6. Comparison between heuristic rule extraction and genetics-
bases multiobjective rule selection with respect to the average 
error rates on training patterns (Sonar). 
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Fig. 7. Comparison between heuristic rule extraction and genetics-
bases multiobjective rule selection with respect to the average 
error rates on training patterns (Wine). 

 
Wisconsin Breast Cancer Data: Experimental results by 
heuristic rule extraction are summarized in Table 4 where 
the average error rate on test patterns over three iterations of 
the 10CV procedure is shown for each combination of a 
heuristic rule extraction criterion and the number of 
extracted rules for each class. The best error rate in each 
row is indicated by bold face. The best result for the case of 
100 rules for each class is obtained by the difference 
criterion in support in Table 3. So we use this heuristic rule 
extraction criterion in genetics-based multiobjective rule 
selection to extract 300 candidate rules for each class from 
training patterns in each run of the 10CV procedure. 
 In Fig. 8, we compare heuristic rule extraction with 
multiobjective rule selection by depicting the average error 
rates on test patterns. Much better results are obtained by 

multiobjective rule selection. The dotted and dashed lines 
show the worst and best results of the C4.5 algorithm in 
Elomaa and Rousu [18], respectively. We can see that 
multiobjective rule selection outperforms the best result of 
the C4.5 algorithm with respect to the generalization ability. 
 

Table 4. Average error rates on test patterns of extracted rules by 
heuristic rule extraction (Breast W). 

Support with minimum confidence Rules for 
each class 0.5 0.6 0.7 0.8 0.9 

Product Diff.

1 11.19 11.19 11.19 11.19 7.66 7.42 7.45
2 8.30 8.52 8.67 8.12 5.77 6.53 6.50
3 6.71 6.71 6.71 5.55 5.89 5.95 6.23
4 5.31 5.50 5.29 5.53 5.29 5.17 5.78
5 4.97 5.09 5.02 5.36 5.83 5.74 5.53

10 5.70 5.69 5.73 6.05 6.09 6.69 6.61
20 6.50 6.45 6.47 6.75 8.64 8.40 8.17
30 9.52 9.51 9.52 9.66 8.91 8.09 7.54
40 7.49 7.52 7.48 7.61 7.14 7.18 7.13
50 7.56 7.55 7.55 7.56 7.73 7.55 7.56
100 7.53 7.52 7.54 7.54 7.38 7.09 7.09
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Fig. 8. Experimental results of the 10CV procedure (Breast W). 

 
Diabetes Data: In the same manner as Fig. 8, we compare 
the average error rates on test patterns between heuristic 
rule extraction and multiobjective rule selection in Fig. 9. 
Experimental results show that multiobjective rule selection 
does not outperform heuristic rule extraction in terms of 
error rates on test patterns for the diabetes data set. 
Glass Identification Data: Experimental results are 
summarized in Fig. 10. Fig. 10 clearly shows that better 
results are obtained from multiobjective rule selection than 
heuristic rule extraction. 
Cleveland Heart Disease Data: Experimental results are 
summarized in Fig. 11 where multiobjective rule selection 
does not always outperform heuristic rule extraction. 
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Fig. 9. Experimental results of the 10CV procedure (Diabetes). 
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Fig. 10. Experimental results of the 10CV procedure (Glass). 
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Fig. 11. Experimental results of the 10CV procedure (Heart C). 

Sonar Data: Experimental results are summarized in Fig. 
12. We can see from Fig. 12 that lower error rates are 
obtained by multiobjective rule selection than heuristic rule 
extraction when the number of rules is 9-12. 
Wine Data: Experimental results are summarized in Fig. 13. 
We can see from Fig. 13 that very small rule sets of only 3 
or 4 rules obtained by multiobjective rule selection have 
almost the same generalization ability as much larger rule 
sets of 30-150 rules obtained by heuristic rule extraction. 
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Fig. 12. Experimental results of the 10CV procedure (Sonar). 
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Fig. 13. Experimental results of the 10CV procedure (Wine). 

 
6. Conclusions 
 
 We compared heuristic rule extraction with genetics-
based multiobjective rule selection through computational 
experiments on six data sets from the UC Irvine machine 
learning repository. Experimental results showed that 
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multiobjective rule selection improved the accuracy-
complexity tradeoff curve of heuristically extracted rules by 
searching for good combinations of a small number of rules. 
This improvement was observed in all experiments with 
respect to the accuracy on training patterns and most 
experiments with respect to the accuracy on test patterns. 
Except for the glass data set, multiobjective rule selection 
was comparable to or outperformed the C4.5 algorithm in 
terms of the generalization ability of obtained rule sets.  
 Since a large number of rules are usually obtained from 
data mining, multiobjective rule selection seems to be a 
promising direction to decrease the complexity of extracted 
rules. One difficulty of our EMO approach is its large 
computational load when it is applied to large data sets. 
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Abstract

Although there have been several encouraging attempts
at developing SQL-based methods for data mining, simplic-
ity and efficiency still remain significant impediments for
further development. In this paper, we develop a fixpoint
operator for computing frequent itemsets and demonstrate
three query paradigm solutions for association rule min-
ing that use the idea of least fixpoint computation. We con-
sider the generate-and-test and the frequent-pattern growth
approaches and propose an novel method to represent a
frequent-pattern tree in an object-relational table and ex-
ploit a new join operator developed in the paper. The results
of our research provide theoretical foundation for intelli-
gent computation of association rules and could be useful
for data mining query language design in the development
of next generation of database management systems.

1 Introduction

Knowledge discovery from large databases has gained
popularity and its importance is well recognized. Most ef-
forts have focused on developing novel algorithms and data
structures to aid efficient computation of such rules. Much
work has also been performed on data cleaning, preparation
and transformation. While research into such procedural
computation of association rules has been extensive, little
object-relational technology has yet been significantly ex-
ploited in data mining even though data is often stored in
(object)-relational databases.

Several encouraging attempts at developing methods for
mining object-relational data have been proposed. In prin-
ciple, we can express and implement association rule min-
ing in conventional SQL language (transaction databases)
or XQuery (XML data). This approach was examined by
[4, 8], for instance. However, the resulting SQL (XQuery)
code is less than intuitive, unnecessarily long and compli-
cated. There has no relational optimization yet been ex-

ploited in their proposals. It was pointed out in the litera-
ture that current SQL systems are unable to compete with
ad-hoc file processing algorithms in general purpose data
mining systems such as the well known Apriori algorithm
and its variants [7]. However most data is stored in (object-)
relational database systems, it is meaningful to investigate
intelligent computational methods for association rule min-
ing by exploiting object-relational technology.

The integration of data mining functionality with
database management systems is an essential component of
advanced data retrieval and analysis applications. The main
idea is to combine relational query languages with data min-
ing primitives in an overall framework capable of specifying
data mining tasks as object-relational queries. Logic-based
database languages provide a flexible model of represent-
ing, maintaining and utilizing high-level knowledge. This
motivates us to study a logic-based framework and develop
relational operators (fixpoint and fp-join operators) for in-
telligent data analysis.

In this paper, we focus on computational methods from
three paradigms that have been developed for querying rela-
tional databases. We demonstrate three paradigm solutions
for association rule mining that use the idea of least fixpoint
computation. We consider the generate-and-test and the
frequent-pattern growth approaches and propose an novel
method to represent a frequent-pattern tree in an object-
relational table and exploit a new join operator developed
in the paper. The results of our research provide theoretical
foundation for intelligent computation of association rules
and could be useful for the development of next generation
of database management systems with data mining func-
tionality.

The presentation of the paper is organized as follows. We
briefly review the basic concepts in Section 2. In Section
3 we present three paradigms for data mining query lan-
guages. We develop a fixpoint operator for computing fre-
quent itemsets and show how it is expressed in the three dif-
ferent paradigms. We then present datalog implementation
for frequent itemset mining by using the frequent-pattern
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growth approach in Section 4. Finally we give a conclusion
in Section 5.

2 Basic Concepts

In this section, we briefly review the basic concepts of
association rule mining and data mining query languages.

2.1 Association Rules

While many forms of rule inductions are interesting, as-
sociation rules were found to be appealing because of their
simplicity and intuitiveness. In this paradigm, the rule min-
ing process is divided into two distinct steps - discovering
large item setsand generating rules.

The first work on mining association rules from large
databases is the support-confidence framework established
by Agrawal et al. [1]. LetI = {i1, ...in} be a set of item
identifiers. An association rule is an implication of the form

X⇒Y, whereX,Y ⊆ I , andX∩Y = /0

Association rules are characterized by two measures. The
rule A⇒ B holds in the transaction setD with supports,
wheres is the percentage of transactions inD that contain
A∪B. This is taken to be the probability,P(A∪B). The
rule A⇒ B has confidencec in the transaction setD if c is
the percentage of transactions inD containing A that also
contain B. This is taken to be the conditional probability,
P(B | A). That is,

support(A⇒ B) = P(A∪B)
con f idence(A⇒ B) = P(B | A)

The task of mining association rules is to generate all asso-
ciation rules that satisfy two user-defined threshold values:
a minimum support and a minimum confidence.

2.2 Data Mining Query Languages

A desired feature of data mining systems is the ability
to support ad hoc and interactive data mining in order to
facilitate flexible and effective knowledge discovery. Data
mining query languages can be designed to support such a
feature [3]. In particular, declarative query language sup-
port acts an important role in the next generation of Web
database systems with data mining functionality. Query
systems should provide mechanism of obtaining, maintain-
ing, representing and utilizing high level knowledge in a
unified framework. A knowledge discovery support envi-
ronment should be an integrated mining and querying sys-
tem capable of representing domain knowledge, extracting
useful knowledge and organizing in ontologies [2].

We will introduce three query language paradigms for
association rule mining in the next section. The first
paradigm is logic based. It is a variant of the complex
value calculus. The second paradigm provides basic alge-
braic operations for manipulating (object-)relations to con-
struct mining results to queries. It uses an aggregation oper-
ator in addition to the basic relational operations. The third
paradigm stems from logic programming. We use Datalogcv

with negation as a representative.
Designing a comprehensive data mining language is

challenging because data mining covers a wide spectrum of
tasks and each task has different requirements. In this pa-
per we provide some theoretical foundations for relational
computation of association rule mining.

3 Relational Computation for Association
Rules

As most data is stored in (object-)relational databases,
we can exploit object-relational technology to manage and
mine interesting information from those data. In this sec-
tion, we investigate relational computation methods and
demonstrate three query paradigm solutions for association
rule mining that use the idea of least fixpoint computation.
The three query language paradigms, namely calculus, alge-
bra and deductive rules, continue to play an important role
in query languages of the next generation database systems.

3.1 Calculus+Fixpoint

We provide a noninflationary extension of the complex
value calculus with recursion and aggregate operation. We
define a fixpoint operator which allows the iteration of cal-
culus formulas up to a fixpoint. In effect, this allows us to
define frequent itemsets inductively using calculus formu-
las.

The motivation of defining a fixpoint operator in a data
mining query language is to provide an alternative way to
achieve association rule mining and to assist the develop-
ment of a logic database language with data mining mech-
anisms for modeling extraction, representation and utiliza-
tion of both induced and deduced knowledge.

Definition 1 LetSk(V) denote the set of all degree-k subset
of V . For any two sets S and s, s is said to be a degree-k sub-
set of S if s∈ P (S) and |s| = k. P (S) denotes the powerset
of S.

The noninflationary version of the fixpoint operator is pre-
sented as follows. Consider association rule mining from
object-relational data. Suppose that raw data is first pre-
processed to transform to an object-relational database. Let
D = (x,y) be a nested table in the mapped object-relational
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database. For example,x = items, y = count. Itemsis a set
valued attribute. LetSk

x(D) = {t | ∃u ∈ D,v = Sk(u[x]),t =
(v,y)}. We develop a fixpoint operator for computing the
frequent itemsets as follows. The relationJn holding the fre-
quent itemsets with support value greater than a thresholdδ
can be defined inductively using the following formulas:

ϕ(T,k) = σy≥δ( xGsum(y)S
k
x (D)(x,y)) −→ T(x,y),

if k = 1

ϕ(T,k) = T(x,y)∨σy≥δ(xGsum(y)(∃u,v{T(u,v)

∧(Sk
x (D)(x,y))∧u⊂ x−→ T(x,y)})), if k≥ 1

as follows:J0 = /0; Jn = ϕ(Jn−1,n),n > 0. WhereG is the
aggregation operator. Hereϕ(Jn−1,n) denotes the result of
evaluatingϕ(T,k) when the value of T isJn−1 and the value
of k is n. Note that, for each input databaseD, and the
support thresholdδ, the sequence{Jn}n≥0 converges. That
is, there exists somek for which Jk = Jj for every j > k.
Clearly,Jk holds the set of frequent itemsets ofD. Thus the
frequent itemsets can be defined as the limit of the forgo-
ing sequence. Note thatJk = ϕ(Jk,k+ 1), so Jk is also a
fixpoint of ϕ(T,k). The relationJk thereby obtained is de-
noted byµT(ϕ(T,k)). By definition,µT is an operator that
produces a new nested relation (the fixpointJk) when ap-
plied toϕ(T,k).

In [6], the author proposed a fixpoint operator for com-
puting frequent itemsets which is different from our defini-
tion. The least fixpoint operator of [6] is based on bottom-
up computation approach which starts from the ’distance-1’
subsets of the input database. We believe that our fixpoint
operator is more appropriate as it can take advantage of anti-
monotonicity property to do cross examination and make
the computation method more efficient.

3.2 Algebra+While

Relational algebra is essentially a procedural language.
The extension of the complex value algebra with recursion
and incorporated with awhile construct is consistent with
the imperative paradigm and can express association rule
mining queries.

We expect to have a functionsub available in the next
generation database systems that takes three arguments, two
sets of values (Items)V1 andV2, and a natural numberk such
that |V2| ≤ k≤ |V1|, and returns the degree-k subsets of the
setV1 that includeV2. We define a new join operator called
sub-join.

Definition 2 Let us consider two relations with the same
schemes{Item,Count}. r 1

sub,k s = {t | ∃u ∈ r,v ∈ s
such that u[Item] ⊆ v[Item] ∧∃t

′
such that(u[Item] ⊆ t

′
⊆

v[Item]∧|t
′
|= k), t =< t

′
,v[Count] >}

Here, we treat the result ofr 1
sub,k sas multiset meaning, as

it may produce two tuples oft
′
with the same support value.

In the mining process we need to add all support values for
each item.

Example 1 Given two relations r and s, the result of
r 1

sub,2 s is shown as follows.

r
Items Support
{a} 0
{b, f} 0
{d, f} 0

s
Items Support
{a,b,c} 3
{b,c, f} 4
{d,e} 2

r 1
sub,2 s

Items Support
{a,b} 3
{a,c} 3
{b, f} 4

Figure 1. An example of sub-join

Given a databaseD = (Item,Support) and support thresh-
old δ, the following fixpoint algorithm computes frequent
itemset ofD.
Algorithm fixpoint
Input: An object-relational databaseD and support thresh-
old δ
Output: The frequent itemsets ofD

begin
k := 1
T := σSupport≥δ( ItemGsum(Support)S

k
Item(D)))

P := /0
L := T
While (L−P) 6= /0 do
P := L
k := k+1
T := σSupport≥δ( ItemGsum(Support)(T 1

sub,k (D))
L := L∪T
endwhile

end

Example 2 Let’s look at an example of fixpoint algorithm,
based on the transaction table, D, of figure 2.

The figure 3 shows the computation steps of thefixpoint
algorithm. It is easy to show that the above algorithm com-
putes the fixpoint defined in the Calculus +µ language and
hence the result below follows.

Theorem 1 For any object-relational database and mini-
mum thresholdδ, the fixpoint defined in the association rule
mining expressed in Calculus + µ and the fixpoint algorithm
compute the identical frequent itemsets.
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D
TID item IDs
T1 {i1, i2, i5}
T2 {i2, i4}
T3 {i2, i3}
T4 {i1, i2, i4}
T5 {i1, i3}
T6 {i2, i3}
T7 {i1, i3}
T8 {i1, i2, i3, i5}
T9 {i1, i2, i3}

Figure 2. Transaction data

step1
Items Support

i1 6
i2 7
i3 6
i4 2
i5 2

step2
Items Support

i1 6
i2 7
i3 6
i4 2
i5 2

{i1, i2} 4
{i1, i5} 2
{i1, i3} 4
{i2, i5} 2
{i2, i4} 2
{i2, i3} 4

step3
Items Support

i1 6
i2 7
i3 6
i4 2
i5 2

{i1, i2} 4
{i1, i5} 2
{i1, i3} 4
{i2, i5} 2
{i2, i4} 2
{i2, i3} 4
{i1, i2, i5} 2
{i1, i2, i3} 2

Figure 3. Computation steps of fixpoint algo-
rithm

Proof Sketch. The fixpoint operator in Calculus defines
frequent itemsets inductively by using the basic definitions
of the used-defined threshold and the aggregation operator.
The fixpoint algorithm computes the frequent itemsets by

TABLE Corporation = (Doc-id, Sub-doc)
TABLE Products = (Product-id, prod-name, Warranty,

Composition, Distributor)
Warranty = (premium, country, w-period)
Composition = (Composition-id, c-name,

Component)
Component = (part, quantity)
Distributor = (company, fee)

TABLE Parts = (Part-id, part-name, weight, Warranty,
Source)

Warranty = (country, w-period)
Source = (company, cost)

Figure 4. Three mapped nested relational
schemes.

performing the sub-join operation. This yields the result
which is equivalent to the fixpoint defined in the Calculus.2

Consider the object-relational database shown in fig-
ure 4. An association rule describes regularities of com-
ponent parts contained in products. For example, the rule
{p1, p2, p3}⇒ {p4} states that if a product containing parts
{p1, p2 p3} is likely to also contain part{p4}. We can ap-
ply the abovefixpoint Algorithm to find frequent patterns
and then generate such association rules.

3.3 Datalogcv,¬

In this section, we present an operational semantics for
association rule mining queries expressed in Datalogcv,¬

program from fixpoint theory. The formal syntax and se-
mantics of Datalogcv,¬ are straightforward extensions of
those for Datalogcv. A Datalogcv,¬ rule is an expression
of the formA← L1, ...,Ln, whereA is an atom and each
Li is either an positive atomBi or a negated atom¬Bi . A
Datalogcv,¬ program is a nonempty finite set of Datalogcv,¬

rules.
The challenge is to develop declarative means of com-

puting association rules so that we can mine interesting in-
formation from object-relational databases. It is difficult to
cast inherent procedurality into the declarativity of logic-
based systems.

We present a Datalog program as shown in the figure 5
which can compute the frequent itemsets. The rule 1 gen-
erates the set of1-itemsetfrom the input frequency table.
The rule 2 selects the frequent1-itemsetwhose support is
greater than the threshold. Let us assume that we have a
sub-joinrelation, wheresub join(J, I ,k,x) is interpreted as
’x is obtained by applyingsub function to two operandsJ
andI , i.e.,x = J 1

sub,k I . The rule 3 performs thesub-join
operation on the tablelarge generated in the rule 2 and the
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1. cand(J,C) ← f req(I ,C), J⊂ I , |J|= 1
2. large(J,C) ← cand(J,C), C > δ
3. T(genid(),x,C2) ← large(J,C1), f req(I ,C2),

k = max(|J|)+1,sub join(J, I ,k,x)
4. cand(x,sum< C >)← T(id,x,C)
5. large(x,y) ← cand(x,y),y > δ

Figure 5. Deductive association rule mining
program

input frequency table.
Datalog system is of set semantics. In the above pro-

gram, we treatT facts as multisets, i.e., bag semantics, by
using system generatedid to simulate multiset operation.
The rule 4 counts the sum total of all supports correspond-
ing to each candidate item set generated in tableT so far.
Finally, rule 5 computes the frequent itemsets by selecting
the itemsets in the candidate set whose support is greater
than the threshold. Suppose thatn is the maximum car-
dinality of the itemsets in the frequency table. The above
program is bounded byn.

We now show the program that definessub-join:

to join(J, I) ← A(J), B(I), J⊂ I
sub join(J, I ,k,x)← to join(J, I), J⊂ I , x⊂ I , |x|= k

Once the frequent itemset table has been generated, we
can easily apply the following rule, which was proposed in
[5], to produce all association rules.

rules(I ,J− I ,support,con f)← large(I ,CI ), large(J,CJ),
support= CJ,
con f = CJ/CI , con f > δ

In the final step, the above generated rules will be repre-
sented in the output object-relational table.

4 The frequent-pattern growth approach

The frequent-pattern growth mining process consists of
two steps [3]:

• Construct a compact frequent-pattern tree which re-
tains the itemset association information in less space.

• Mine the FP-tree to find all frequent patterns recur-
sively.

When the database is large, it is unrealistic to construct a
main memory-based FP-tree. An interesting alternative is
to store a FP-tree in an object-relational table. See Figure6.
The mining of the FP-tree proceeds as follows. Start from
each frequent 1-itemset (as an initial suffix pattern), perform

FP
part count pattern-base

pattern count
p5 2 < p2, p1 > 1

< p2, p1, p3 > 1
p4 2 < p2, p1 > 1

< p2 > 1
p3 6 ... ...
p1 6 ... ...
p2 7 ... ...

Figure 6. An object-relational table represent-
ing FP-tree

mining by applying a special kind of join, called fp-join
which is defined below, on the pattern base attribute in the
FP-tree table.

Definition 3 Given two arrays a=< a1, ...,am > and b=<
b1, ...,bn >, where m≤ n, the join of two arrays is defined
as a1 b =

• < a1, ...,a j >, if (a1 = b1,...,aj = b j ) and aj+1 6= b j+1

where j< m; or

• < a1, ...,am >, if a1 = b1,...,am = bm

For example, given two arrays< i2, i1, i5 > and< i2, i1 >,
then< i2, i1, i5 > 1 < i2, i1 > = < i2, i1 >. Then we define
fp-join for the conditional pattern base attribute in the FP-
tree table.

Definition 4 Given two relations u1 and u2 with schemas
{< pattern: array,count : integer>}, the fp-join of two
relations is defined as follows:

u1 1
f p u2 = {t | ∃t1 ∈ u1 and t2 ∈ u2 such that

(t[pattern] = t1[pattern] 1 t2[pattern]
∧t[count] = t1[count]+ t2[count])
∨(t ∈ u1∧ (∀t

′
∈ u2,t[pattern] 1 t

′
[pattern] = /0)

∨(t ∈ u2∧ (∀t
′
∈ u1,t[pattern] 1 t

′
[pattern] = /0)

Example 3 Suppose there is a relation R= {<< i2, i1 >
,2>,<< i2 >,2>,<< i1 >,2>}. R1

f p R= {<< i2, i1 >
,2 >,<< i2 >,4 >,<< i1 >,2 >}

We present a Datalog program as shown in the figure 7
which can compute the frequent itemsets by using the FP-
growth approach. Similar to the candidate generate-and-test
approach, the rules 1 and 2 produce the frequent 1-itemset
L1. The rule 3 produces the prefix patterns for each item
(i.e., part). The rule 4 counts the number of patterns for
each prefix. The nest operator is applied to create nested
schemaFP-base(J,C, pattern-base< K,PC >) in rule 5.
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1. f req(parts,count< company>)
← D(company, parts)

2. L1(J,C)
← f req(I ,C), J⊂ I , |J|= 1,C > δ

3. FP-pattern(J,C,T,K)
← L1(J,C), D(T, I), J⊂ I , K = I −J

4. FP-tree(J,C,K,count< T >)
← FP-pattern(J,C,T,K)

5. FP-base(J,C, pattern-base< K,PC>
← FP-tree(J,C,K,PC)

6. Cand-FP(J,C,CondFP< base,count>)
← FP-base(J,C,B), B 1

f p B = CondFP
7. FP(I ,PC)
←Cand-FP(J,C,CondFP< K,C >),
Powerset(CondFP.K)∪J = I , PC= C, C > δ

8. FP(I ,min(PC))
← FP(I ,PC)

Figure 7. The FP-growth approach to frequent
pattern mining

The rule 6 applies the fp-join operator defined before to cre-
ate the conditional pattern base, calledCondFP. Finally,
rules 7 and 8 form the frequent patterns by concatenating
with the suffix pattern. In the program we usePowerset
function which can be implemented in a sub-program and
an aggregate functionmin to select the minimum support of
the prefix patterns.

5 Conclusion

We have investigated data mining query languages from
three paradigms that have been developed for querying rela-
tional databases. Three paradigm solutions for association
rule mining that use the idea of least fixpoint computation
have been demonstrated. In this paper, we have also shown
that object-relational data can be mined in a declarative way
so that extensive optimization task can be done in the un-
derlying object-relational database engine. The main dis-
advantage of the deductive approach to data mining query
languages is the concern of its performance. However, op-
timization techniques from deductive databases can be uti-
lized and the most computationally intensive operations can
be modularized. We have presented our preliminary ideas
first and comprehensive query optimization and experimen-
tal work will be carried out at a later stage. The results
of our research provide theoretical foundations for intelli-
gent computation of association rules and could be useful
for data mining query language design in the next genera-
tion of database systems.
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Abstract

Knowledge based query answering system takes advan-
tage of data mining techniques to provide answers to user
queries that involve incomplete or foreign attribute values.
However, such process may cause a security issue when the
system contains confidential data required to be protected.
The confidential data as well as other values can be treated
as missing or incomplete, and vulnerable to improper dis-
closure of their true values. To minimize such vulnerability,
data transformation techniques are often utilized. In this
paper, we present a method that exploits hierarchical struc-
ture of attributes to minimize the changes from the original
information system while accommodating a given security
requirement. In particular, our method replaces the exist-
ing data with more generalized ones in such a way that the
value replacement cannot be used to predict the confidential
data.

1 Introduction

Knowledge based Query Answering Systems (QAS) is
to discover rules either locally or at remote sites (if sys-
tem is distributed) and use these rules in a query answer-
ing process. There are two different situations within this
objective. The first is when attributes are incomplete and
we may need rules to approximate the incomplete values to
answer to a query. The second is when users want to ask
queries based on some attributes which are not listed in a
local domain. Since these attributes are locally not avail-

able, we can only search for their definitions at remote sites
and use them to approximate given queries [6] [8]. One
way to design query answering systems more flexible is to
apply a hierarchical structure to their attributes [12]. Unlike
single-level attribute system, data collected with different
granularity levels can be assigned into an information sys-
tem with their semantic relations. For example, when the
age of a person is recorded, the value can be 17 or young .

We can expect higher probability of answering user
queries successfully by using a QAS. However, it may cre-
ate a security problem when a set of data is confidential (e.g.
age or salary) and protection is required. The exact value of
confidential data can be concealed from an information sys-
tem, for example, by replacing them with null values. How-
ever, users can send a query to QAS asking the confidential
data as incomplete or foreign, and QAS returns the hidden
data.

When we design a protection method against such im-
proper disclosure, one approach is to transform a set of data
to null values [5]. In other word, we completely hide a set
of existing values that are used to predict the confidential
data. Another approach, which we will discuss in this pa-
per, is to mask the exact value by substituting it with more
generalized values at higher level of a hierarchical attribute
structure. For example, instead of showing a person is 17
years old we may show that she is young if disclosure of the
value young does not compromise the privacy of the per-
son. The advantage of the second approach that users will
be able to acquire more explicit answers to their queries.

Clearly, we need to assume that a hierarchical attribute
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structure is given to each attribute and they are part of the
common ontology which is large and approximately the
same among sites. They should come from the same world
(e.g. medical information) and, consequently, rules gener-
ated from different sites are close in terms of their mean-
ings. In addition, each site is forced to accept a new version
of ontology if any change has been made. Also the hierar-
chical structure must be seen by users. Users have freedom
of querying any level of values in the hierarchy.

The tradeoff between security risk and information avail-
ability is relatively clear. As the amount of hidden or rough
data continues to grow the disclosure of confidential data
drops. However, it is important to retain the original sources
of information to the maximum extent possible to maintain
the QAS to return more precise answers. In that respect,
the method presented in this paper aims to minimize the
amount of data replacement in terms of value granularity
while making sure that QAS will not reveal the data below
the safe levels of granularity.

2 Null Value Imputation in Distributed
Query Answering System

2.1 Distributed Query Answering System
and Chase

In real life, data are often collected and stored in infor-
mation systems residing at many different locations, built
independently, instead of collecting them and storing at
only one single location. In such cases we talk about dis-
tributed (autonomous) information systems. It is very pos-
sible that an attribute is missing or hidden in one of them
while it occurs in many others. Also, in one information
system, an attribute might be partially hidden, while in other
systems the same attribute is either complete or close to
being complete. Assume that user submits a query to one
of the information systems (called a client) which involves
some hidden or non-local attributes. In such a case, net-
work communication technology is used to get definitions
of these unknown or hidden attributes from other informa-
tion systems (called servers). All these new definitions form
a knowledge base which can be used to chase both missing
and hidden attributes at the client site.

In Figure 1, we present two consecutive states of a dis-
tributed information system consisting of S1, S2, S3. In the
first state, all values of all hidden attributes in all three infor-
mation systems have to be identified. System S1 sends re-
quest qS1 to the other two information systems asking them
for definitions of its hidden attributes. Similarly, system
S2 sends request qS2 to the other two information systems
asking them for definitions of its hidden attributes. Now,
system S3 sends request qS3 to the other two information

systems also asking them for definitions of its hidden at-
tributes. Next, rules describing the requested definitions are
extracted from each of these three information systems and
sent to the systems which requested them. It means, the set
L(D1) is sent to S2 and S3, the set L(D2) is sent to S1 and
S3, and the set L(D3) is sent to S1 and S2.

The second state of a distributed information system,
presented in Figure 1, shows all three information systems
with the corresponding L(Di) sets, i ∈ {1, 2, 3}, all ab-
breviated as KB. Now, the Chase algorithm [9] is run
independently at each of our three sites. Resulting informa-
tion systems are: Chase(S1), Chase(S2), and Chase(S3).
Now, the whole process is recursively repeated. It means,
both hidden and incomplete attributes in all three new in-
formation systems are identified again. Next, each of these
three systems is sending requests to the other two systems
asking for definitions of its either hidden or incomplete at-
tributes and when these definitions are received, they are
stored in the corresponding KB sets. Now, Chase algo-
rithm is run again at each of these three sites. The whole
process is repeated till some fixed point is reached (no
changes in attribute values assigned to objects are observed
in all 3 systems). When this step is accomplished, a query
containing some hidden attribute values can be submitted to
any Si, i ∈ {1, 2, 3} and processed in a standard way.

2.2 Null Value Imputation Algorithm
Chase

Let us examine in more detail the Chase algorithm. As-
sume that information is stored in an information system
S = (X,A, V ), where X is a set of objects, A is a finite set
of attributes, and V is a finite set of their values. In particu-
lar, we say that S = (X,A, V ) is an incomplete information
system of type λ if the following three conditions hold:

• aS(x) is defined for any x ∈ X , a ∈ A,

• (∀x ∈ X)(∀a ∈ A)[(aS(x) = {(ai, pi) : 1 ≤ i ≤
m}) →

∑m

i=1 pi = 1],

• (∀x ∈ X)(∀a ∈ A)[(aS(x) = {(ai, pi) : 1 ≤ i ≤
m}) → (∀i)(pi ≥ λ)].

Incompleteness is understood by having a set of weighted
attribute values as a value of an attribute. Now, suppose
that L(D) = {(t → vc) ∈ D : c ∈ In(A)} (called a
knowledge-base) is a set of all rules extracted from S =
(X,A, V ) by ERID(S, λ1, λ2), where In(A) is the set of
incomplete attributes in S and λ1, λ2 are thresholds for min-
imum support and minimum confidence, correspondingly.
ERID [11][2] is the algorithm for discovering rules from in-
complete information systems, and used as a part of null
value imputation algorithm Chase [8]. Assume now that a
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Figure 1. Global extraction and exchange of
knowledge

query q(B) is submitted to system S = (X,A, V ), where B
is the set of all attributes used in q(B) and that A ∩ B 6= ∅.
Attributes in B− [A∩B] are called either foreign or hidden
in S. If S is a part of a distributed information system, defi-
nitions of such attributes can be extracted at remote sites for
S [7].
The new definition replaced by the imputation algorithm is
computed as following. Let Rs(xi) ⊆ L(D) be the set of
rules that the conditional part of the rules is equal to the at-
tribute values in xi ∈ S, and d be a null value. Then there
are three cases:

• Rs(xi) = φ In this case, d cannot be predicted.

• Rs(x) = {r1 = [t1 → d1], r2 = [t2 → d1], ..., rk =
[tk → d1]} In this case, every rule implies a single
decision attribute value, and d = d1.

• Rs(xi) = {r1 = [t1 → d1], r2 = [t2 → d2], ..., rk =
[tk → dk]} In this case, rules imply multiple decision
values.

The confidence for the attribute value d for xi driven by
KB is defined as following [5]. Assuming that support and
confidence of a rule ri is [si, ci], and the product of the
weight of each attribute value that matches to a(x) ∈ ti

is
∏

pa(ti), for i ≤ k.

conf(d′) =

∑
{[

∏
pa(ti)] · si · ci : [d′ = di]}∑
{[

∏
pa(ti)] · si · ci}

, 1 ≤ i ≤ k

We replace the null value with d′ when each conf(d′) > λ.

2.3 Inconsistency

As we already pointed out, the knowledge base L(D),
contains rules extracted locally at the client site (informa-
tion system queried by user) as well as rules extracted from
information systems at its remote sites. Since rules are ex-
tracted from different information systems, inconsistencies
in semantics, if any, have to be resolved before any query
can be processed. There are two options:

• a knowledge base L(D) at the client site is kept con-
sistent (in this scenario all inconsistencies have to be
resolved before rules are stored in the knowledge base)

• a knowledge base at the client site is inconsistent (val-
ues of the same attribute used in two rules extracted
at different sites may be of different granularity lev-
els and may have different semantics associated with
them).

In general, we assume that the information stored in on-
tologies [4], [14] and, if needed, in inter-ontologies (if they
are provided) is sufficient to resolve inconsistencies in se-
mantics of all sites involved in Chase. Inconsistencies re-
lated to the confidence of conflicting rules stored in L(D)
do not have to be resolved at all (algorithm Chase does
not have such a requirement). The fact, that rules stored in
L(D) can be extracted at different sites and under different
interpretations of incomplete values, is not pleasant assum-
ing that we need to use them in Chase. In all such cases,
following the same approach as in [7], rough semantics can
be used for interpreting rules in L(D).

One of the problems related to an incomplete informa-
tion system S = (X,A, V ) is the freedom how new val-
ues are constructed to replace incomplete values in S, be-
fore any rule extraction process begins. This replacement
of incomplete attribute values can be done either by Chase
or/and by a number of available statistical methods [3]. This
implies that semantics of queries submitted to S and queries
processed by the query answering system QAS based on
Chase, may often differ. In such cases, following again
the approach in [7], rough semantics can be used by QAS
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to handle this problem. In this paper we assume that the
semantic of attribute hierarchy is consistent among all the
sites. For example, if a ∈ Ai ∩ Aj , then only the granular-
ity levels of a in Si and Sj may differ but conceptually its
meaning, both in Si and Sj is the same.

2.4 Rule Extraction and Hierarchical At-
tribute

Before we discuss Chase and data security, we need to
examine how rules are generated from S that is represented
in hierarchical attribute structures. Assume that an infor-
mation system S = (X,A, V ) is a partially incomplete in-
formation system of type λ, and a set of tree-like attribute
hierarchy HS is assigned to S where ha ∈ HS represents
all possible values of an attribute a ∈ A. If we denote a
node in ta as ai, the set {aik : 1 ≤ k ≤ m} contains all the
children of ai as shown in Figure 2.

Attribute values in the same level

a

a2 a3a1

a21 a22 a2m2 a31 a32 a3m3

a311 a312 a313

Figure 2. Hierarchical Attribute Structure

Many different combinations of attribute levels can be
chosen for rule extraction. To extract rules at particular lev-
els of interest in S, we need to transform attribute values
before the rule extraction algorithm ERID is executed. In
the following, we will use the term ’generalization’ of a(x)
to refer to the transformation of a(x) to a node value on the
path from a(x) to the root node in the hierarchy, and ’spec-
ification’ to mean a transformation of a(x) to a node value
on the path to the leaf node. As defined, each attribute value
in an incomplete information system is a value/weight pair
(a(x), p). When attribute values are transformed, the new
value and weight are interpreted as the following,

• if a(x) is specialized, it is replaced by a null value.
This means that a parent node is considered as a null
value for any child node.

• if a(x) is generalized, it is replaced by ai ∈ ta at
the given level on the path. The weight of the new
value is the sum of the children nodes. Intermediate

nodes placed along the path, if exist, are computed in
the same way. That is p′

a(x) =
∑

pa(x)ik, (1 ≤ k ≤

m, pa(x)ik ≥ λ).

Clearly, the root node in each tree is an attribute name,
and it is equivalent to a null value. Null value assigned to
an object is interpreted as all possible values of an attribute
with equal confidence assigned to all of them. Now, let LH

be the set of level of attributes to be used, λ1 be the sup-
port, and λ2 be the confidence value. ERID for hierarchical
attributes is represented as ERID-H(S,HS , LH , λ1, λ2).

3 Data Security and Chase Applicability

3.1 Problem of Data Confidentiality

To illustrate the data confidentiality problem, let’s con-
sider the following example. Suppose a local information
system S ∈ Si for i ∈ I operates in a distributed QAS as
shown in Table 1. We assume that values in S are stored un-
der hierarchical attribute structures HS that is part of global
ontology [7] for QAS. Now, an attribute d in S contains a
set of confidential data, and Sd (see Table 2) has been built
by replacing the exact values of d with values at a higher
level in the hierarchical attributes structure that is consid-
ered as a secure level. User queries are now responded by
Sd in replace of S. However, disclosure risk still remains
because users may treat the confidential data as incomplete
or foreign and contact remote sites in QAS. Clearly, dSd

(x)
predicted by Chase can be equal to dS(x) for a number of
objects [10]. Another vulnerability may be present in a sim-
ilar way that users employ locally generated rules to pre-
dict attribute values contained in the rules that are extracted
from remote sites [5]. For example, suppose we have gen-
eralized a set of additional attribute values to block the rules
extracted from remote sites. However, there may be some
local rules that reconstruct those additionally replaced val-
ues, and d can be predicted again.

3.2 Chase Applicability

Suppose that a knowledge base KB for S contains a set
of rules. In order for the Chase algorithm to be applicable
to S, it has to satisfy the following conditions [7]:

• attribute value used in the decision part of a rule form
KB has the granularity level either equal to or finer than
the granularity level of the corresponding attribute in
S.

• the granularity level of any attribute used in the classi-
fication part of a rule from KB should be either equal
or softer than the granularity level of the corresponding
attribute in S.
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X A B C D E F

x1 (a[1,1,1],
2
3

)(a[2,1,1],
1
3

) b[1,1,1] c[1,1,1] d[1,1,2] e[1,1,1] f[1,1,1]

x2 a[2,2,1] b[2,1,1] c[1,1,1] d[2,3,2] e[2,1,1] f[1,3,2]

x3 a[1,1,2] (b[1,1,1],
1
2

)(b[2,1,2],
1
2

) c[1,1,1] d[1,3,2] e[1,1,1] f[1,3,1]

x4 a[2,2,1] b[2,1,2] c[2,1] (d[1,1,1],
2
3

)(d[2,1,1],
1
3

) e[2,1,1] f[1,1,1]

x5 a[1,1,2] b[2,3,2] c[1,2,1] d[1,2] e[2,3,2] f[1,2,2]

x6 (a[1,1,1],
2
3

)(a[2,1,1],
1
3

) b[2,2,1] c[1,3,1] d[1,1,2] e[2,3,2] f[1,1,2]

.

.
xi a[1,2,1] b[2,1,1] c[1,1] d[1,2,2] e[1,1,1] f[1,1,1]

Table 1. Information System S

The set of values predicted by Chase may consist of hor-
izontally and vertically different values. That means when
two or more rules are supported by an object xi, the pre-
dicted set can contain multiple values which granularity lev-
els in HS are the same (e.g. {d[1], d[2]}), or different (e.g.
{d[1], d[1,2]}). We use the same confidence calculation func-
tion discussed in section 2.2 and allow all such cases to be
valid predictions.

4 Method Description

We present an algorithm that protects values of a con-
fidential attribute from Chase algorithm. We continue to
assume that attribute d ∈ S contains confidential values,
and all d(xi) are generalized to the values at the 2nd level
of HS . The new information system Sd is shown in Ta-
ble 2. The structure of each attribute hierarchy is same as
that of a ∈ A as illustrated in Figure 1 that has four lev-
els and one to three nodes in each level. The rules in the
knowledge base KB are summarized in table 3. For instance
r1 = [c[1,1,1] → d[1,1,2]] is an example of a rule belong-
ing to KB. We use λ = 0.3 and τ = 0.8. Based on above
assumptions, we define the following sets:

• α(x), the set of attribute values used to describe x in
Sd

• α(t), the set of attribute values used in t, where t is
their conjunction

• R(x) = {(t → d) : α(t) ⊆ α(x)} ⊆ KB, the set
of rules in KB where the attribute values used in t are
contained in α(x)

• β(x) = ∪{α(t) ∪ {d} : [t → d] ∈ R(x)}.

Our protection strategy consists of two phases: First, we
identify the set of attribute values that are used for predic-
tion for the confidential values. In the second phase, the

values identified in the first phase are generalized. Before
we discuss the phases in detail, we introduce the notion of
chase closure and validity of prediction.

4.1 Chase Closure and Validity of Predic-
tion

To find the minimum amount of values that are used for
prediction for the confidential values, a bottom up approach
has been adapted. We check the values that will remain un-
changed starting from a singleton set containing attribute
value a by using chase closure and increase the initial set
size as much as possible. Chase closure is similar to transi-
tive closure [1] except that if the weight of a predicted value
is less than λ, the value is not added to the closure. For ex-
ample, an object x5 supports three rules, {r6, r7, r8} ∈ KB
that predict {b[2,3,1], b[2,3,2]}. In this case, b[2,3,1] is not in-
cluded in the closure because p′d[2,3,1]

= 45
235 < 0.3.

Identification method based on chase closure automati-
cally rules out any superset of must-be-hidden values, and
minimizes the computational cost. The justification of this
is quite simple. Chase closure has the property that the su-
perset of a set s also contains s. Clearly, if a set of attribute
values predicts d1, then the set must be hidden regardless of
the presence/abscence of other attribute values.

When a confidential value has been predicted by Chase,
the weight of the predicted value may be substantially dif-
ferent from that of the actual value. If this is the case, pro-
tection is not required because an adversary cannot have
enough confidence in the confidential value. In order to
determine whether a prediction is valid we define a mea-
surement function and compare it to the threshold value τ .
Suppose that the weight of an actual confidential value di

is denoted as pd[i] and weight of the predicted value is de-
noted as p′d[i]

. The degree of validity associated with the
prediction is defined as,
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X A B C D E F

x1 (a[1,1,1],
2
3

)(a[2,1,1],
1
3

) b[1,1,1] c[1,1,1] d[1,1] e[1,1,1] f[1,1,1]

x2 a[2,2,1] b[2,1,1] c[1,1,1] d[2,3] e[2,1,1] f[1,3,2]

x3 a[1,1,2] (b[1,1,1],
1
2

)(b[2,1,2],
1
2

) c[1,1,1] d[1,3] e[1,1,1] f[1,3,1]

x4 a[2,2,1] b[2,1,2] c[2,1] (d[1,1],
2
3

)(d[2,1],
1
3

) e[2,1,1] f[1,1,1]

x5 a[1,1,2] b[2,3,2] c[1,2,1] d[1,2] e[2,3,2] f[1,2,2]

x6 (a[1,1,1],
2
3

)(a[2,1,1],
1
3

) b[2,2,1] c[1,3,1] d[1,1] e[2,3,2] f[1,1,2]

.

.
xi a[1,2,1] b[2,1,1] c[1,1] d[1,2] e[1,1,1] f[1,1,1]

Table 2. Information System Sd

Rule A B C D E F Sup Conf

r1 c[1,1,1] (d[1,1,2]) 100 0.9
r2 a[1,1,1] (d[1,1,2]) f[1,1,1] 110 1
r3 b[1,1,1] (e[1,1,1]) 120 1
r4 (a[1,1,1]) e[1,1,1] 100 1
r5 (a[1,1,1]) b[1,1,1] f[1,1,1] 90 1
r6 a[1,1,2] (b[2,3,1]) 50 0.9
r7 (b[2,3,2]) c[2,3,2] 100 1
r8 (b[2,3,2]) e[2,3,2] f[1,2,2] 100 0.9
r9 a[1,1,1] c[1,1] (d[1,1,2]) 100 0.9
r10 a[1,1,1] (d[1,1,2]) f[1,1] 100 0.9

Table 3. Rules in KB

v = 1 −
pd[i] − p′d[i]

pd[i]

and, we say di is secure against Chase if v < τ . For exam-
ple, assume that τ = 0.8 for a confidential attribute d. A
confidential attribute value is {(d[1],

3
4 )), (d[2],

1
4 )} and it is

predicted as {(d[1],
1
4 )), (d[3],

4
4 )}. In this case, d[1] is not

considered as a valid prediction because 1 − (0.5/0.75) <
0.8 .

4.2 Phase One : Identification

We start phase one with a set β(x) for the ob-
ject x1 which construction is supported by 5 rules
{r1, r2, r3, r4, r5} from KB, and check the chase closure of
each singleton subset δ(x) of that set. If the chase closure
of δ(x) contains classified attribute value d1, then δ(x) does
not sustain, it is marked, and it is not considered in later
steps. Otherwise, the set remains unmarked. In the second
iteration of the algorithm, all two-element subsets of β(x)
built only from unmarked sets are considered. If the chase
closure of any of these sets does not contain d1, then such
a set remains unmarked and it is used in the later steps of

the algorithm. Otherwise, the set is getting marked. If ei-
ther all sets in a currently executed iteration step are marked
or we have reached the set β(x), then the algorithm stops.
Since only subsets of β(x) are considered, the number of
iterations will be usually not large.

So, in our example the following singleton sets are
considered:

{a[1,1,1]}
+

= {a[1,1,1]}, unmarked
{b[1,1,1]}

+
= {b[1,1,1], e[1,1,1], a[1,1,1]}, unmarked

{c[1,1,1]}
+

= {c[1,1,1], d[1,1,2]} ⊇ {d[1,1,2]}, v[1,1,2] = 1

> 0.8 marked *
{e[1,1,1]}

+
= {e[1,1,1], a[1,1,1]}, unmarked

{f[1,1,1]}
+

= {f[1,1,1]}, unmarked.

Clearly, {c[1,1,1]} has to be concealed. The next step is
to build terms of length 2 and determine which of the set
can remain.

{a[1,1,1], b[1,1,1]}
+ = {a[1,1,1], b[1,1,1]} unmarked

{a[1,1,1], e[1,1,1]}
+ = {a[1,1,1], e[1,1,1]} unmarked

{a[1,1,1], f[1,1,1]}
+ = {a[1,1,1], f[1,1,1], d[1,1,2]} ⊇ {d[1,1,2]},

v[1,1,2] = 1 > 0.8 marked *
{b[1,1,1], e[1,1,1]}

+ = {b[1,1,1], e[1,1,1]} unmarked
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a

a1 a2

a11 a12 a13 a21 a22 a23

a111 a112 a121 a122 a131 a132 a211 a212 a221 a222 a231 a232

Figure 3. Attribute Hierarchy for a ∈ S

{b[1,1,1], f[1,1,1]}
+ = {b[1,1,1], f[1,1,1], a[1,1,1], d[1,1,2]} ⊇

{d[1,1,2]}, v[1,1,2] = 1 > 0.8 marked *
{e[1,1,1], f[1,1,1]}

+ = {e[1,1,1], f[1,1,1]} unmarked

Now we build 3-element sets from previous sets that
have not been marked.

{a[1,1,1], b[1,1,1], e[1,1,1]}
+ = {a[1,1,1], b[1,1,1], e[1,1,1]} un-

marked

We have γ(x1) = {a[1,1,1], b[1,1,1], e[1,1,1]} as unmarked
set that contains the maximum number of elements and does
not have the chase closure containing d.

4.3 Phase Two : Generalization

Now, we need to generalize attribute values in ε(x1) =
{α(x1)−γ(x1)}. There are two issues. One is that we may
have more than one γ(x1). If that is the case, we have to
choose one of them. The other issue is that each of γ(x1)
contains multiple attribute values that can be generalized.
Several strategies can be considered to reduce the amount of
generalization. One approach is to compute the minimum
amount of generalization for each γ(x1)i in terms of the
number of layer transformations, and compare the result.
However, it is difficult to say that the approach will produce
the best result because (1) the granularity distance between
a parent and a child can be different among ha ∈ HS , and
(2) some attribute values are semantically more significant
than others in QAS. In this case, a priority can be given
by the system. In this paper, we assume that the amount of
abstraction between a parent and a child is identical across
all the attributes, and generalization is applied equally to
each attribute value.

From phase one, we acquired the set ε(x1) =
{c[1,1,1], f[1,1,1]}. Our strategy in the second phase is
that attribute values in ε(x1) ⊆ (ε(x1) ∪ γ(x1)) are
generalized against the rules in KB, without modifying
γ(x1), until the chase closure of the newly created set does
not contain d[1,1,2]. This strategy works because, as was
exhibited in the first phase, if we replace all attribute values

in ε(x1) with null values, d[1,1,1] cannot be predicted. So,
between a node connected to the root node (null value)
and the current node, d[1,1,1] will not be predicted by Chase.

{{c[1,1,1], f[1,1,1]}, {a[1,1,1], b[1,1,1], e[1,1,1]}}
+

= {a[1,1,1], b[1,1,1], e[1,1,1], c[1,1,1], f[1,1,1], d[1,1,1]}

⊇ {d[1,1,2]}, v[1,1,2] = 1 marked*

We start from c by generalizing c[1,1,1] to c[1,1].

{{c[1,1], f[1,1,1]}, {a[1,1,1], b[1,1,1], e[1,1,1]}}
+

= {a[1,1,1], b[1,1,1], e[1,1,1], c[1,1], f[1,1,1], d[1,1,1], d[1,1,2]}
⊇ {d[1,1,2]}, v[1,1,2] = 1 marked*

{{c[1,1], f[1,1]}, {a[1,1,1], b[1,1,1], e[1,1,1]}}
+

= {a[1,1,1], b[1,1,1], e[1,1,1], c[1,1], f[1,1], d[1,1]}
⊇ {d[1,1,2]}, v[1,1,2] = 1 marked*

{{c[1], f[1,1]}, {a[1,1,1], b[1,1,1], e[1,1,1]}}
+

= {a[1,1,1], b[1,1,1], e[1,1,1], c[1], f[1,1], d[1,1]} unmarked

We have {c[1], f[1,1], a[1,1,1], b[1,1,1], e[1,1,1]} as a set that
cannot be used to predict d[1,1,2]. In a similar way, we com-
pute the maximal sets for any object xi.

5 Implementation and Conclusion

The algorithm was written in PL/SQL language, and ex-
ecuted in the Oracle 10g database running on Windows XP.
A web based user interface was implemented using HTML
DB as shown in Figure 4. The sample table that contains
3,000 objects with 7 attributes was randomly extracted from
the census bureau database of the UCI Knowledge Discov-
ery in Databases Archive [13]. A set of simple hierarchical
attribute structure with a maximal depth of 3 was built on
the basis of the interpretation of data. Each level of the hi-
erarchical tree contains one to three nodes. The table was
randomly partitioned into 3 tables that each have 1,000 tu-
ples. One of these tables is called a client and the remaining
2 are called servers. We extracted 26 rules that describe the
values of a confidential attribute from the servers, and 33
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Figure 4. User Interface

local rules that are used to describe the values of remaining
attributes.

To evaluate whether the use of hierarchical attributes is
effective, we compared the total number of slots replaced by
null values with that obtained by the same method without
using hierarchical attribute structures. This was achieved
by running the program without the execution of the gen-
eralization step. Without generalization step, 570 slots are
replaced with null values. When the attribute hierarchy was
applied, 187 slots are replaced by null values with 952 level
transformations that include the number of transformations
to null values. The result shows that 383 more attribute val-
ues can be shown to users. These values consist of values
at the same level or values at higher levels. Clearly, the
amount of improvements may not be the same when differ-
ent set of rules and information systems are used. However,
the use of hierarchical attributes will reduce the number of
null values.
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[10] Z. Raś and A. Dardzińska. Data security and null value
imputation in distributed information systems, pages 133–
146. Springer-Verlag, 2005.
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Abstract

Classifying large datasets without any a-priori informa-
tion poses a problem especially in the field of bioinformat-
ics. In this work, we explore the problem of classifying hun-
dreds of thousands of cell assay images obtained by a high-
throughput screening camera. The goal is to label a few
selected examples by hand and to automatically label the
rest of the images afterwards. We deal with three major re-
quirements: first, the model should be easy to understand,
second it should offer the possibility to be adjusted by a do-
main expert, and third the interaction with the user should
be kept to a minimum. We propose a new active clustering
scheme, based on an initial Fuzzy c-means clustering and
Learning Vector Quantization. This scheme can initially
cluster large datasets unsupervised and then allows for ad-
justment of the classification by the user. Furthermore, we
introduce a framework for the classification of cell assay
images based on this technique. Early experiments show
promising results.

1. Introduction

The development of high-throughput imaging instru-
ments, e. g. fluorescence microscope cameras, resulted in
them becoming the major tool to study the effect of agents
on different cell types. These devices are able to produce
more than 50.000 images per day; up to now, cell images
are classified by a biological expert who writes a script to
analyze a cell assay. As the appearance of the cells in differ-
ent assays change, the scripts must be adapted individually.
Finding the relevant features to classify the cell types cor-
rectly can be difficult and time-consuming for the user.

The aim of our work is to design classifiers that are both
able to learn the differences between cell types and are easy

∗This work was supported by the DFG Research Training Group
GK-1042 ”Explorative Analysis and Visualization of Large Information
Spaces”.

to interpret. As we are dealing with non-computer experts,
we need models that can be grasped easily. We use the con-
cept of clustering to reduce the complexity of our image
dataset. Cluster analysis techniques have been widely used
in the area of image database categorization.

Especially in our case, we have many single cell images
with similar appearance that may nevertheless be catego-
rized in different classes. Another case might be that the
decision boundary between active and inactive is not re-
flected in the numerical data that is extracted from the cell
image. Furthermore, the distribution of the different cell
types in the whole image dataset is very likely to be biased.
Therefore, the results of an automatic classification based
on an unsupervised clustering may not be satisfactory, thus
we need to adapt the clustering so that it reflects the desired
classification of the user.

As we are dealing with a large amount of unlabeled data,
the user should label only a small subset to train the classi-
fier. Choosing randomly drawn examples from the dataset
would render the classifier biased toward the underlying dis-
tribution of different kinds of cells in the cell assay images.
Instead of picking redundant examples, it would be better
to pick those that can ”help” to train the classifier.

This is why we try to apply the concept of active learn-
ing to this task, where our learning algorithm has control
over which parts of the input domain it receives informa-
tion about from the user. This concept is very similar to
the human form of learning, whereby problem domains are
examined in an active manner.

To this date, research on approaches that combine clus-
tering and active learning is sparse. In [1], a clustering
of the dataset is obtained by first exploring the dataset
with a Farthest-First-Traversal and providing must-link and
cannot-link constraints. In the second Consolidate-phase,
the initial neighborhoods are stabilized by picking new ex-
amples randomly from the dataset and again by providing
constraints for a pair of data points.

In [7], an approach for active semi-supervised cluster-
ing for image database categorization is investigated. It in-
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cludes a cost-factor for violating pairwise constraints in the
objective function of the Fuzzy c-means algorithm. The ac-
tive selection of constrains looks for samples at the border
of the least-well defined cluster in the current iteration.

Our approach is similar to the latter one, although we do
not update the cluster centers in each iteration but after an
initial fuzzy c-means clustering.

In Section 2, we briefly recapitulate the fuzzy c-means
algorithm, Section 3 describes our approach for the active
selection of constraints, and the moving of the cluster pro-
totypes. In Section 4, we introduce our prototype of a Cell
Assay Image Mining System with its subcomponents for
the image processing, before presenting first experimental
results in Section 5.

2. Fuzzy c-means

The fuzzy c-means (FCM) algorithm [2] is a well-known
unsupervised learning technique that can be used to reveal
the underlying structure of the data. Fuzzy clustering allows
each data point to belong to several clusters, with a degree
of membership to each one.

Let T = ~xi , i = 1, . . . ,m be a set of feature vectors
for the data items to be clustered, W = ~wk, k = 1, . . . , c
a set of c clusters. V is the matrix with coefficients where
vi,k denotes the membership of ~xi to cluster k. Given a
distance function d, the fuzzy c-means algorithm iteratively
minimizes the following objective function with respect to
v and w:

Jm =
|T |∑
i=1

c∑
k=1

vm
i,kd(~wk, ~xi)2 (1)

m ∈ (1,∞) is the fuzzification parameter and indicates
how much the clusters are allowed to overlap each other.
Jm is subject to minimization under the constraint

∀i :
c∑

k=1

vi,k = 1 (2)

FCM is often used when there is no a-priori information
available and thus can serve as an exploratory technique.
A common problem is that the cluster structure does not
necessarily correspond to the classes in the dataset. This
is why the FCM algorithm is used only as a preprocessing
technique. The fuzzy memberships vi,k prove useful for the
selection of datapoints at the border between clusters as we
will see in Section 3.1.

3. Active Learning

In order to improve the performance of the classifica-
tion based on the initial, unsupervised clustering, we aim

to guide the clustering process. Because we have no a-
priori information about the class distribution in the dataset,
we need to adapt the cluster prototypes so that they closer
model the boundaries between the classes. This is done in
two steps: 1. Labeling of a few ”interesting” examples and
2. moving the prototypes according to these labels. These
steps are discussed in detail in the following sections.

3.1. Selection of Constraints

We presume that we have access to a user (in our case the
biological expert) who can give us labels for different data
points. Another option would be that the user can define
a constraint between a given pair (xi, xj) of data points.
The assets and drawbacks of giving labels vs. constraints
are discussed in [3].

We assume that the most informative data points lie be-
tween clusters that are not well separated from each other,
so-called areas of possible confusion. This coincides with
the findings and results in [6] and [13]. The prior data dis-
tribution plays an important role, [4] proposes to minimize
the expected error of the learner:∫

x

ET

[
(ŷ(x;D)− y(x))2|x

]
P (x)dx (3)

where ET denotes the expectation over P (y|x) and ŷ(x;D)
the learner’s output on input x given training set D. If we
act on the assumption that the underlying structure found
by the FCM algorithm already inheres an approximate cate-
gorization, we can select better examples by querying data
points at the classification boundaries. That means we take
into account the prior data distribution P (x).

In order to have information about the general class label
of the cluster itself, we let the user label the cluster centers
using for each the nearest neighbor in the dataset, a tech-
nique known as ”Cluster Mean selection” [6]. If more than
one example per cluster shall be labeled, one can either split
the corresponding cluster into subclusters, or alternatively
select prototypes near to the one that was selected first.

To identify the data points that lie on the frontier be-
tween two clusters, we propose a new procedure that is eas-
ily applicable in the fuzzy setting. Rather than dynamically
choosing one example for the labeling procedure, we focus
on a selection technique that selects a whole batch of N
samples to be labeled. Note that a data item ~xi is consid-
ered as belonging to cluster k if vi,k is the highest among its
membership values. If we consider the data points between
two clusters, they must have an almost equal membership
to both of them. Given a threshold t ∈ [0, 1] the condition
can be expressed as follows:

|vi,k − vi,l| < t, vi,k, vi,l ≥
1
c

(4)
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In order to find N samples to query, we start with a high
value for t and reduce it iteratively until we have obtained
a set of ≤ N samples. Figure 1 shows an example of three
clusters and the selected examples generated by this proce-
dure.

Figure 1. Three initial clusters and the se-
lected examples

Having obtained the labels for the cluster centers and for
a few confusing examples between them, we propose a new
method in the next section to adapt the actual clusters to
better match the underlying decision boundaries.

3.2. Learning Vector Quantization

The learning vector quantization algorithm [12] is a well-
known competitive learning method. The outline of the al-
gorithm is given in Algorithm 1. The LVQ algorithm needs
the class information for all training examples. Since we
can provide the class information only for a few selected
examples, we need to optimize the selection of them.

3.3. Adaptive Active Learning

Our approach to optimize the LVQ algorithm includes
the selective sampling scheme given in the previous sec-
tion. It is dependent on an initial clustering and constitutes
an extension to the LVQ-algorithm to choose the best ex-
amples. The total active clustering process is outlined in
Algorithm 2.

Our initial prototypes in step 1 are the ones obtained
from a fuzzy c-means clustering. Having the labels for each
cluster prototype, we can select the next candidates for the
query procedure along each border between two clusters.
Which datapoints are selected depends on the chosen num-
ber N of examples we want to query. If N is small (approx-
imately the number of clusters), some inter-cluster relation-
ships will not be queried because the corresponding clusters

Algorithm 1 LVQ algorithm
1: Choose R initial prototypes for each class m1(k),

m2(k), . . . ,mR(k), k = 1, 2, . . . ,K, e. g. by sampling
R training points at random from each class.

2: Sample a training point ~xi randomly (with replacement)
and let mj(k) denote the closest prototype to ~xi. Let gi

denote the class label of ~xi and gj the class label of the
prototype.

3: if gi = gj then {that is they belong to the same class}
4: move the prototype toward the training point:

mj(k) ← mj(k) + ε(~xi − mj(k)), where ε is the
learning rate.

5: end if
6: if gi 6= gj then {that is they belong to different classes}
7: move the prototype away from the training point:

mj(k)← mj(k) + ε(~xi −mj(k))
8: end if
9: Repeat step 2, decreasing the learning rate ε to zero with

each iteration.

Algorithm 2 Adaptive Active Clustering Procedure
1: Perform the fuzzy c-means algorithm (unsupervised).
2: Select N training examples with the most similar mem-

bership to several clusters.
3: Ask the user for the labels of these samples.
4: Move the prototypes according to the label of the pro-

totype and the samples.
5: Evaluation: If classification is better or matches the ex-

pected error then stop.
6: Repeat step 2, decreasing the learning rate ε to zero with

each iteration.

are clearly separated in the feature space. As our approach
focuses on separating classes given an initial ”meaningful”
clustering, this does not pose a problem. In each phase of
our adaptation of the LVQ algorithm, we move the cluster
centers according to a batch of N training points. For each
point from the sample set we determine the two clusters that
it lies in between and let the user label this point. We only
update the two cluster prototypes that are involved at this
point and leave the rest unchanged. We repeat the step of
selecting a batch of training examples, then move the clus-
ter centers for each point, decreasing the learning rate ε in
each iteration. The process of selected examples and their
influence on the prototypes can be seen clearly in Figure 2,
where we assume that the majority of examples selected
have the class label of cluster 2. The question is when to
stop the movement of the cluster centers. The simulated an-
nealing in the LVQ algorithm will stop the movement after
a certain number of iterations. However, an acceptable so-
lution may be found earlier, that is why a second stopping
criterion is introduced.
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Figure 2. Points selected and their influence
on the cluster prototypes

We make use of the already labeled examples to compare
the previous to the newly obtained results. After the labels
of the samples between cluster centers have been obtained,
the cluster prototypes are moved. The new classification of
the dataset is derived by assigning to each data point the
class of its closest cluster prototype. By comparing the la-
bels given by the user to the newly obtained labels from the
classification, we can calculate the ratio of the number of
correctly labeled samples to the number of falsely labeled
examples.

4. Application: Cell Assay Image Mining

Our Cell Assay Image Mining System consists of three
major elements: The segmentation module, the feature ex-
traction module, and the classification element. Based on
a modular workflow system, the user can choose and inter-
act with the different modules and create a dataflow. This
allows the user to enable and try out different settings in-
teractively. Different modules for feature extraction or seg-
mentation can be integrated. Figure 3 gives an overview of
a typical workflow.

In the following sections, we focus on the different mod-
ules in more detail.

4.1. Segmentation

In order to calculate the features for each cell individu-
ally, the cell assay image has to be segmented. We prefer
this approach in contrast to [10], because we need to iden-
tify interesting substructures in one image. The segmenta-
tion allows us to consider the cells separately in order to
distinguish between different reactions of cells in the same
image.

Unfortunately, the appearance of different cell types can
vary dramatically. Therefore, different methods for seg-
mentation have to be applied according to the different cell

Image Acquisition

Active Learning

Segmentation

Fuzzy c-means

Feature Extraction

Evaluation

Figure 3. Workflow

types. Work to segment and subdivide cells into the cell
nucleus and cytoplasm based on seeded region growing is
currently under progress. We follow the same assumption
as in the approach from [11] that is, the nucleus can be de-
tected more easily.

4.2. Feature Extraction

The feature extraction module calculates features of a
cell image based on the histogram (first order statistics) and
based on the texture (second order statistics). The histogram
features comprise the mean, variance, skewness, kurtosis,
and entropy of the histogram.

The 14 texture features from Haralick [8] represent sta-
tistics of the co-occurrence matrix of the gray level image.
Four co-occurrence matrices from horizontal, vertical, diag-
onal, and antidiagonal direction are averaged to achieve ro-
tation invariance. These features provide information about
the smoothness, contrast or randomness of the image - or
more general statistics about the relative positions of the
gray levels within the image.

4.3. Classification

The classification module comprises the initial fuzzy
c-means clustering, the cluster evaluation and the Active
Learning Module. As described in Section 3, we utilize
the FCM to obtain our first set of cluster prototypes. The
evaluation of the actual clustering can be based on several
factors:

Cluster Validity Measures can give us information of the
quality of the clustering [15]. We employ the within
cluster variation and the between cluster variation as an
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indicator. This descriptor can be useful for the initial
selection of features. Naturally, the significance of this
method decreases with the proceeding steps of labeling
and adaptation of the cluster prototypes.

Visual Cluster Inspection allows the user to make a judg-
ment of the clustering quality. Instead of presenting the
numerical features, we select the corresponding image
of the data tuple that is closest to the cluster prototype.
We display the images with the highest membership to
the actual cluster and the samples at the boundary be-
tween two clusters if they are in different classes. This
approach is obviously prone to mistakes due to wrong
human perception and should therefore be used only as
an overview technique.

Evaluation in Adaptive Active Learning is performed as
described in Section 3.3 where we judge the new clas-
sification based on the previously labelled examples.
This method is the most suitable method to evaluate
the quality of the classification. It also allows for the
possibility to show the progress of the classification, so
that the user can decide whether he wants to continue
or not.

The classification of new images is obtained by classify-
ing each individual cell within the given image. Each cell
is assigned to a cluster and its corresponding class. The
proportion of the distribution of the different classes is the
decisive factor for classifying the whole image. If a clear
majority decision can be made, the image is not considered
further. Borderline cases with equal distributions of classes
are sorted into a special container to be assessed manually
by the biological expert. It becomes apparent that this ap-
proach allows for a rather high fault tolerance, as a human
will have no objections to label a few images by hand rather
than to risk a misclassification.

5. Experimental Results

As is the nature of the active learning problem, we do not
have a large labeled dataset available to test the performance
of our scheme. Therefore, we have created several artificial
test sets to evaluate our classifier.

The first test set demonstrates the mode of action of our
new active clustering scheme and is shown in Figure 1. It
is a 3-dimensional artificial test set consisting of 4036 sam-
ples. The class label is indicated as the brightness. This
dataset shows a typical problem where one class is un-
derrepresented and the decision boundaries of the unsuper-
vised clustering are not optimal because of the bias of the
data. Figure 4 shows the class boundaries of the cluster
prototypes and the decision boundaries. The optimum of
10 steps has been performed, selecting N = 5 examples

Figure 4. Movement of cluster prototypes
over time and set of additionally labeled ex-
amples

in each iteration. As can clearly be seen, the active clus-
tering scheme improves the positions of the cluster proto-
types significantly to reduce the classification error. On the
other hand, too many steps decrease the performance. An
overview of the number of steps and the misclassification
rate is shown in Table 1. As we can see, the bias of the clas-

# steps Misclassification rate
0 16.13 %
5 11.89%
8 8.94%
9 8.57%

10 8.00%
11 8.45%
12 8.82%
15 10.16%
25 25.54%

Table 1. Number of steps vs. Misclassifica-
tion Rate

sifier can be reduced and the decision boundaries between
overlapping classes in the feature space can be optimized.

In our second test set, we added some noise to the clus-
ters to test how distortion of class labels at the border in-
fluences the moving of the cluster prototypes. The effect
on this dataset is shown in Figure 5. With the increasing
noise at the border between clusters, the misclassification
rate based on the initial unsupervised clustering naturally
increases, too. With 10 steps and N = 5 labeled exam-
ples on the borders, we improved the misclassification rate
from 17.95 % to 9.97 %. We increased the noise at the bor-
ders (see Figure 6) with the result that the misclassification
rate improved from 27.77 % to 17.96 % . In this case, the
initial clustering had two cluster prototypes that belonged
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Figure 5. Movement of cluster prototypes
over time and set of additionally labeled ex-
amples with noise

to the same class. This could be neutralized by requery-
ing the labels for the cluster prototypes in each step of our
adaptive active clustering procedure. This seems also use-
ful to explore new classes in the dataset that have not yet
been found if not enough clusters have been used. We ob-
served this phenomenon in the Ionosphere-dataset from the
UCI Repository [5], too. Having used four clusters to clas-
sify the data, only one class has been found from the initial
fuzzy c-means clustering. The additional queries allowed to
find the second class and due to this we were able to shift
the classification accuracy. However, this is not the major
goal of our algorithm.

Figure 6. Movement of cluster prototypes
over time and set of additionally labeled ex-
amples with more noise

6. Related Work

There have been a number of approaches to perform par-
tial supervision in the clustering process. In the aforemen-
tioned works from [1] and [7], the objective function of
the fuzzy c-means algorithm is extended by a cost factor
for violating pairwise constraints. In the work of [14], la-
beled patterns are incorporated in the objective function of
the Fuzzy ISODATA algorithm. All these approaches take
a set of labeled patterns or constraints as input before the
clustering process is started. These samples are selected
randomly.

In [9], a very similar approach to our own work has
been proposed that selects the points to query based on the
Voronoi diagram that is induced by the reference vectors.
The datapoints to query are selected from the set of Voronoi
vertices with different strategies. However, our approach
differs from all others in the way that the data is preclustered
before supervision enhances the classification accuracy and
the queries can be obtained in a fast and simple way.

7. Conlusions and Future Work

In this work, we have addressed the problem of classify-
ing a large dataset when only a few labeled examples can
be provided by the user. We have shown that the fuzzy c-
means algorithm is well applicable for stable initial cluster-
ing and that it has the advantage that data points on the bor-
der can easily be detected by scanning through their mem-
berships to the cluster prototypes. Based on the labels of
the selected examples at the borders between clusters and
the labeled cluster prototypes, we have proposed to move
the cluster prototypes, similar to the Learning Vector Quan-
tization (LVQ) method. We have shown that the misclas-
sification rate can be improved, especially when the class
distributions are skewed. We have discussed an application
in the mining of cell assay images, where the data often in-
herits the aforementioned properties.

Future work needs to be done to optimize the number
N of queries that are posed during the active clustering
process. It would be desirable to pose just as many queries
as necessary. Another important point are wrong classifi-
cations given by the user. Examples that contradict each
other in terms of the model by their given labels could be
requeried to be able to filter out wrong human classifica-
tions.
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Abstract

Weak data dependencies in large databases coupled
with poorly written web based applications are a major
cause for malicious transactions. The problem of security
becomes especially acute when access roles are changed
among users. Also the poorly maintained data base caches
are a cause for added security leaks. We propose an
adaptive Intrusion detection system to keep track of the
varying data dependencies as and when the definitions for
various access roles are changed. We use an association
rule based approach to track all relevant data dependency
rule sets for different access roles using a hierarchical
structure. We then identify malicious transactions from the
transaction logs in the database using the data dependency
rule sets. These rule sets are continuously updated and
stored in a repository. Our approach is shown to reduce
data access bottlenecks, and ensures minimal manual
intervention for maintaining a secure database.

1. Introduction.

Securing important data from malicious users has been
a long time concern for many both in the industry as well
as in research. Nowadays with web applications used to
access large databases over a network the need for
Intrusion Detection has become a dire necessity. When a
Database is first designed, it is designed and architected
based on initial requirements obtained from the users of the
proposed database. There are few security leaks and the
web application is well written for the predicted database
transactions. Usually a Database system so designed will
not be expected to be very susceptible to intrusion. It is a
well known fact that no software can be made completely
bug free. Loop holes are usually over looked due to poor
testing or oversight as part of the database designer. Also
the database may require some re-definitions of the
database access roles based on the changes in the user’s 
tasks. New tables and views may have to be added or old

ones removed which causes changes in the data
dependencies among tables. Such changes are generally
invoked to make the database more feasible and this
sometimes drastically affects the security level. A once
secure database now becomes a perfect haven for
malicious attacks. This is the core problem that we are
trying to solve in our paper.

A database which is a part of a network or a host is
usually monitored by the database administrator. He
defines the various access roles for the users. These users
hence have restricted access. With a number of users
accessing the database with usually common queries there
is a high bottleneck that arises. To prevent slow access
speeds, the result sets of some queries are cached in a
database cache. This reduces the access time but also opens
the door for malicious unauthorized accesses. Usually large
enterprises have a lot of sensitive data and hence in most
cases such caches are poorly used. Malicious activity also
arises when access roles are changed or the permissions for
a user are changed. Another way to intrude into the
database is by performing an unauthorized sequence of
transactions. For example, a delete operation on a data item
cannot occur without reading the item first.

Intrusion Detection Systems(IDS) have been
developed to identify any unauthorized attempts or
successful attacks on any type of monitored data or
resources available as part of a network or host system.
Most IDSs detect such malicious activity either at the
transaction level or at the operating system(OS) level [1]. It
is also shown that transaction level attacks take care of
most OS level attacks [2], [3]. But there are many attacks
which occur internal to the network such as by a user with
lesser privileges accessing data that requires more access
rights. Such attacks can be identified by analyzing the
transaction logs. A transaction log contains all the
transactions made on a database. More on Transaction logs
are explained in later sections. By analyzing these logs
most malicious activity can be identified. In a typical
database accessed over a network there may be as many as
one million transactions a day and any kind of
computational analysis will prove to be costly and tedious.
There have been a number of approaches to reduce the
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time using different approaches, the most recent effective
strategy being data mining [4].
Data mining is the analysis of data to establish

relationships and identify hidden patterns of data which
otherwise would go unnoticed. Even so existing
approaches require analysis of millions of records. Our
approach reduces the time to determine the sensitive data
patterns from changing data access roles in the database,
thereby identify any malicious activity and allow secure
database caching at the network level.

Usually the database itself will not have security
restrictions on individual data items. Access roles define
the read/write/execute rights for each table in the database.
Users generally query the database using transactions (or
bulk transactions) through a web API. These transactions
limit the number of valid queries that are allowed on a
database. This is very common in web applications which
use a large database over the internet. It is very easy to
break into the database by writing malicious code to run
illegal transactions and executing them on the database if
the web application is not written carefully. In [5] the
authors propose an effective means to locate and repair the
damage on-the-fly for web based data intensive
applications with reasonable (database) performance
penalty.

In our approach we propose an adaptive IDS which
defines a set of data dependency rule sets based on
changing access roles which are maintained in a repository
to identify such malicious transactions. The rest of the
paper is organized as follows: Section 2 briefly discusses
the current approaches and related work in this area of
research. Section 3 outlines our concepts and assumptions
used in our approach. We describe the various phases of
our adaptive IDS in Section 4. We present an analysis of
our approach to two well known database oriented web
applications in Section 5. A brief conclusion and a
discussion on our future work of applying an adaptive IDS
to distributed databases using a multi agent framework is
given in Section 6.

2. Current and related work.

Many researchers have dwelled into the field of
database intrusion detection in databases using data
mining. In [4], the author talks about a framework for
continuously adapting the intrusion detection system for a
computer environment as it is upgraded. The paper shows a
number of data mining approaches to solve this problem
and greatly discusses the results. Intrusion Detection has
been approached using data mining by many researchers
like [6]. In [5] , a multiphase damage confinement
approach to ensure no damage is spread across the
database after the detection is done. [7]’s paper uses a data
dependency miner to identify correlations between data
items and defines read and write sets for each data item.
These rules are mined by scanning the database logs but it

does not take into consideration the fact that the data
dependency rules do not hold good for different access
roles. We show in this paper that by applying the data
dependency miner for transactions of each access role the,
data dependencies will be more reliable. Also we show
how the database transaction cache which caches
frequently queried resultsets can be used more efficiently,
by effectively preventing malicious accesses.

In [7], the authors argue that malicious writes are the
major security threats and simple approach is given to
identify malicious writes using data dependencies. The
paper does not identify illegal reads. Our approach
identifies all types of illegal accesses. Data mining is
required to identify hidden data dependencies which might
cause security threats and using triggers and stored
procedures, we can only prevent expected loop holes. A
possible solution is using dynamic stored procedures to
maintain changing database data dependencies for
intrusion detection but this an inflexible approach
especially for a database which is accessed using a web
based application.

Our approach deals with illegal transactions submitted
to the DBMS via some mechanism using a user id with
lower access rights using a web based application. Also it
will prevent those intruders who bypassed the access
control mechanism as the data dependency rule set will
still track the valid sequence of reads and writes required
for each transaction.

A change in the database models is inevitable and
hence the security of the DB is at stake if the IDS model
does not adapt itself to these changes. Also, adaptive
database models have been shown to detect malicious
transactions more effectively. In [4], the authors present a
number of data mining approaches and their effectiveness
for detecting malicious transactions.

3. Concepts and Assumptions

3.1. Database Schema, Access Roles and
privileges.

A Database schema is a set of objects owned by a
user. A user automatically has all object privileges for
schema objects contained in his or her schema. A user can
grant any object privilege on any schema object he or she
owns to any other user or role. A privilege can be granted
explicitly. For example, the privilege to insert records into
table X can be explicitly granted to the user A.
Alternatively a privilege can be granted to an access role
which is a named group of privileges, and then the role can
be granted to one or more users. For example, the privilege
to insert records into a STUDENT table can be granted to
the role named ADVISOR, which in turn can be granted to
the users AdvisorB and ProfA.
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In a relational Database such access roles are granted
privileges in the form of a hierarchy with higher level
access roles inheriting all privileges of lower level access
roles. Our model works on this assumption. A sample
hierarchical pattern is shown in Figure1

A BC,D
Figure 1

Each Access Role type is assigned a weight which
represents its level in the hierarchy. For example from
Fig.1, C and D will be at level 1, B at level 2 , and A at
level 3. In our paper we define each type of access roles
with a set of read/write permissions for each table or view.

3.2. Transaction.

A transaction consists of a sequence of reads and
writes of different data items from different tables in the
database. A transaction Tk can be denoted as < o1(d1),
o2(d2), o3(d1) >  where di where i =  1….n is the different 
data items in the database, oi is an operation of the data
and belongs to the set of reads and writes <r,w>. The data
sequence for a transaction can be shown as Dk = {d1,d2}.
Such a transaction will exist for the read or write operation
for every data item in the database. i.e to perform a read or
write operation there maybe some other read or write
operation required on other data items prior to this
read/write. This is called data dependency between data
items and such validations are usually not made in by the
database. The database only checks for foreign key, and
primary key dependencies. Our data mining analyzer
analyses all transactions’ read/write sequences and
formulates data dependency rule sets that are valid for
different access roles. From these rule sets we show in the
following sections how malicious transactions can be
identified.

3.3. Transaction logs.

Each transaction requested by a user is logged in the
transaction log table. In our approach a log entry consists
of the following fields:
i. Transaction ID
ii. Ischange (has the record changed as a result of

the transaction)
iii. isDelete (has the record been deleted)
iv. isRestore (is this entry a restore point if the

record is lost)
v. which data items have been changed
vi. isMalicious (is this transaction malicious)
vii. SecurityDegree (the minimum access role level

required for the user to initiate such a transaction)
viii. UserId (who initiated this transaction)
ix. AccessRole (what access roles does this user

have on the database)

In our approach, these logs show the malicious transactions
and the degree of maliciousness.

4. Our Approach.

The Apriori algorithm has become a well known
standard for identifying patterns using association rules [8].
Its main disadvantage is that, if a pattern of length n is
needed, then n passes are needed through the items. This
can become a large overhead for our current application.
[9] describes an efficient approach to perform incremental
Mining of Frequent Sequence Patterns in Web logs. The
approach we have used in this paper is a variation of the
Apriori algorithm [10] which identifies frequent rule sets
using a pattern repository in linear time [11]. The main
advantage of this approach is the ease of updating the rule
set and scaling. New frequent rule sets added to the
repository can be used immediately.

However, our problem requires rule sets which
identify all relevant patterns and not only the frequent
ones. The rule set should be complete and all dependencies
that may cause a security threat need to be identified. Also
our problem requires an algorithm that can quickly adjust
the rule sets rather than completely redefining them
depending on changing items and item sets. We use a
pattern repository similar to [11] to keep track of valid data
dependencies. Also we modify the Apriori algorithm to
reflect all relevant data dependencies.

Our approach will help build frequent rule sets by
analyzing all data dependencies for different user access
role types to identify malicious activity from database
transaction logs.

Our approach can be subdivided into the following
phases.

4.1. Phase 1.

a) Initial Database Scan: This phase involves identifying
the different tables, views, data items, primary key and
foreign key constraints in the database.
b) Identifying Access Roles and their hierarchy: Based on
the read/write/execute rights on different views and tables
that each access role has the access roles are classified in a
hierarchy with the access role having all rights (for
example the database administrator) being at the top of the
hierarchy. For example, Administrator  Professor 
Student.
c) Let T be a universal Transaction set containing all
read/write sequences for each transaction tx where x =
1….m , the total number of all transactions for the database 
based on all access role definitions. Let AR with the set of
all access roles ranging from AR1 to ARn where ARn is
the access role with all rights on the database.
d) Ordering Data items for rule set formulation: The
ordering can be performed by performing a count on the
number of times a data item occurs in all transactions in
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the universal transaction set T and then numbering the data
items by the descending order of their counts. Also the
primary key and foreign key constraints of the data items
in a view or table should be taken into care while ordering
as this ordering affects the order in which data items are
selected while formulating the data dependency rule sets
for the various access roles. This order will affect the
formulation of rule sets involving data items that have
cross dependencies between tables. This phase can only be
partially automated and highly depends on the way the
database is defined. For larger databases care should be
taken not to assign cyclic dependencies between tables (for
example, a write on Item x depends on a write in Item y
and vice versa).

4.2. Phase 2.

a) We follow a reverse hierarchical order for rule set
formulation. i.e. the rule sets for the access role with the
least permission (lowest level in the hierarchy) are
identified first followed by one of its siblings at the same
level in the hierarchy as its access role definition will be
different. Once all the rule sets for the lowest level in the
hierarchy are identified, the rule sets for an access role in
the next higher level are formulated and so on. All rule sets
formulated for an access role are directly inherited by its
parent and these rule sets are no longer reformulated.
b) For each access role chosen as per the reverse
hierarchical order,

i. Let TAi{} be a subset of T containing the
read/write operational sequences for all transactions for
the access role ARi. Let each transaction be denoted as
tz where z=1 to the number of transactions in TAi.
Each transaction is a sequence of reads and writes,
ordered from left to right in the order in which they
need to occur. Let DAi be the set which maintains the
counts for each unique aggregating rule set. The Access
role ARi has operation-item set Ai{} which is initially
empty.
ii. First pass: Determine all rule sets of length 1
(Length 1 means a single operation which may be a
read or write on a data item). This is done by scanning
the first operation in each transaction in TAi{} from
left to right. Assign a count to the number of times each
sequence of operation occurs in all TAi{} and store that
count in DAi. These rule sets are now added to Ai{}.
Pass 2 to Pass MaxLengthTransaction of TAi{} or until
bigger rule sets cannot be formed (Pass j): All
Transactions which do not contain a rule set in Ai{} are
removed from TAi{}. Determine all rule sets of length
j. Repeat the same procedure as in Pass 1 and assign the
count of the number of times the operation o(di) occurs
with the existing rule set and store it in DAi.
By setting a support level we can remove infrequent
rule sets from being formed at each pass by tracking the
DAi counts for each aggregating rule set, but it must be

noted that the purpose of this approach is to keep track
of all relevant rule sets as opposed to frequent rule sets
since the main aim is to identify all malicious
transactions. A sample result set aggregation for a few
passes for transactions starting with o(d1) is shown in
Table1.

Table1. Sample data dependency rule set formulation.
Pass Aggregating rule

sets
DAi counts
Cardinality of
TAi = 10

1 o(d1) 8
2 o(d1) o(d2) 8
3 o(d1) o(d2) o(d3) 4
3 o(d1) o(d2) o(d4) 3
3 o(d1) o(d2) o(d5) 1
4 o(d1) o(d2) o(d3)

o(d4)
4

Figure 2 shows the algorithm for the data dependency rule
set formulation. Since the total number of iterations for
both the FOR loops are less than the total number of
transactions in the database, the algorithm runs with a
predictable run time.
c) The rule sets that are in each access role’sAi{} are
added to the rule set repository called the Data
Dependency Repository (DDR). The DDR is kept up to
date with all data dependency rule sets and heavily used to
identify all malicious transactions and effectively secure
the database cache as is explained in the following phases.
Figure 2 Algorithm for Rule Set Formulation

4.3. Phase 3

a) Identifying malicious Database transaction from
Transaction logs: For every transaction a log entry is made
into the Transaction logs. The IDS will identify the rule set
for the transaction from the repository which will also give
the minimum hierarchy level required to initiate this
transaction. This hierarchy level shows the degree of
maliciousness (whether a level 3 user is trying to access a
database using level 5 access privileges).
b) Intrusion Trends: A performance check on the logs can
identify trends in malicious transactions and by tracing the
transactions marked malicious weak data dependencies
which may cause these security leaks can be easily
determined.
c) Securing database cache: Database caches which cache
the resultsets from frequent queries to reduce bottle necks
and database pool accesses, can now use the malicious
degree assigned to the transaction to determine whether to
cache the resultset or not. By not caching highly malicious
resultset we can help prevent security leaks due to
malicious accesses to the database cache.
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Figure 2. Algorithm for data dependency rule set
formulation.

4.4. Phase 4.

Updating the DDR: In this phase all changes in the
access role definitions are analyzed. (A mobile agent can
be used to collect the changes from the database(s)). Not
all rule sets need to be changed. Only that access role
whose permission changed and its parents/grandparents
need to have their rule sets updated as the other access
roles will not be affected. It must also be noted that any
change in a user’s access role will automatically come into
effect and will not affect the intrusion detection system as
the rule sets will not change. Re-running the rule set
formulation passes for every access role change is not
necessary as generally all changes are made during
database upgrades periodically by the database
administrator during general maintenance. Hence re-
running the rule set formulation will not decrease the
performance of the database.

5. Analysis.

In this section we show how we have analyzed our
approach by applying it to two well known scenarios
thereby showing the effectiveness of the approach.
Scenario 1: Consider a typical Student-Course-Professor
database. A sample definition for its access roles is shown
in Table 2. The hierarchy can be represented as follows:
Admin  Professor  Advisor, Student. This means that

all rule sets that apply to the Advisor and/or Student roles
will apply to the Professor role and all rights of the
Professor, Advisor and Student are inherited by the Admin.

Table 2. Access role definition for scenario 1
Course
View

Student
Info

Course
Info

Professor
Availability

Student r r r
Professor r/w r/w r/w r/w
Advisor r r/w r r/w
Admin r/w r/w r/w r/w

Scenario 2:
We simulated a typical Employee-Payroll Accountant-

Employer database. A sample access role definition is
shown in Table 3. The hierarchy can be shown as Admin
 Employer, Payroll Accountant, Employer.

Table 3. Access role definition for scenario 2
Employee
Personal
View

Employees
Payroll
table

HR
View

Payroll
Accountant

r r/w r

Employer r r r/w
Employee r/w r
Admin r/w r/w r/w

Notice that in Scenario 2 all access role types except for
the admin are at the same level. There are not many levels
of hierarchy here and hence the algorithm took longer to
generate all dependencies. In a typical system, the time
taken to generate the initial rule sets will be the longest.
Updating the rule sets in the repository will not affect the
performance of the database by itself. It must be noted that
the robustness of the result sets in identifying malicious
transactions with changing access role definitions is the
main factor determining the efficiency of this approach.
For both scenarios: We used auto-generated log files of
10,000 random transactions from a list of valid and invalid
transactions. Once Phase 2 is completed, a list of rule sets
depicting data dependency patterns is stored in the
repository and intrusion detection begins.

We then tested the rule sets with a list of 1000 random
transactions consisting of both valid and invalid
transactions. Every transaction is marked malicious by
identifying the security degree for that transaction (The
degree specifies the minimum user access role required to
initiate that transaction) based on the access role the
pattern adheres to. We changed the access role definition
for Professors and the patterns were updated. The database
slowed down significantly when the rule sets were
reformulated every time an access role was redefined. We
changed our setup so that all access role changes were
collected over a period of time and the rule sets were

1 i0
2 For each ARi
3 Set Ai {}
4 Set TAi{ set of all transactions tz in T for
ARi}
5 Set DAi{ set of all operations on
all data items in TAi}
6 Set ruleSetLength 1
7 While(rule sets aggregate)
8 j 0
9 For each tz in TAi
10 add each unique sequence to Ai{}
11 DAi[j] number of times a unique
operational (read/write) sequence of length ruleSetLength
occurs in TAi’s transactions.The transactions are
scanned from left to right in that order only.
12 j j + 1
13 ruleSetLength ruleSetLength + 1
14 remove all tz from TAi that do not have
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updated only when a significant change in access roles has
occurred (such that the support level for the rule sets is
below the minimum or when its efficiency in identifying
malicious transaction falls below the required level). In this
case the reformulation can be planned and made to occur
concurrently with database back ups. The transition down
time for the databases IDS can thus be kept at a minimum
when the rule set generator is rerun during off peak times
or when the database is shut down for back up. On contrary
all updates/deletes of users, user permissions did not affect
the database performance and can be done on the fly as the
rule sets are not affected by these changes.

The support level for including a rule set pattern was
set to 25% which means the pattern must be seen in at least
25% of the total number of transactions considered. By
varying the support level the security level changed
accordingly. Care should be taken to set the support level
as it directly affects the robustness of the rule sets in
identifying malicious transactions.

The processing time for the rule sets is an initial cost.
The updates do not interfere with normal database
operations and the database is made more intrusion safe
with negligible down time. Also the DDR helps in keeping
the security leaks caused by poor database cache
maintenance in check. Our data dependency rule set
algorithm has been shown reduce computation time but
since the analysis of the adaptive IDS was made on
simulated values, our proposed approach has only been
subjected to a preliminary testing. An actual deployment of
the approach is currently being performed using intelligent
agents and is discussed in the next section.

6. Conclusion and Future work

Our approach gives an efficient approach to deal with
intrusion detection in large databases. Our adaptive IDS
approach significantly reduces the computational time for
identifying and maintaining valid rule sets using
hierarchical access roles and pattern repositories. It
significantly reduces the databases vulnerability to
malicious transactions and weak data dependencies as a
result of varying access role definitions. It provides an
ability to detect malicious activity when it occurs within
existing or past users of the database without slowing the
database transactional activity.

Our approach can be deployed onto a real time
database system in many ways. We are currently working
on deploying our approach using light weight intelligent
agents. Using light weight agents allows one to add more
functionality in the future without affecting the
performance of existing protocols.
Below are some of the agents that may be required to
perform the various tasks in our approach:
a) An agent to scan and classify the database schema and
access roles. It would take the role of a pre-processor

during the initial set up and later to pre-process the
transaction logs.
b) A mobile agent to identify changes in the access role
definitions.
c) An agent to run the rule set formulation and update the
Pattern repository. This agent is a static agent triggered by
the mobile agent which identifies the access role definition
itself.
d) A Database monitor agent is used to monitor the
database caches.
e) All malicious transactions of all degrees can be
monitored using a intrusion detection monitor agent.
These agents can be set to run every midnight (or when
database activity is low) so that changes in the rule set will
not decrease the IDS performance.

Our approach can also be scaled to distributed
databases and mobile agents can be used to identify data
dependency patterns across databases similarly. These
agents are also light weight agents and we are currently
working on the performance results for such an approach.
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Abstract

We investigate various latent variable models of traffic
flow. More specifically, we present various structured multi-
nomial mixture models for analyzing source-destination
traffic. A “highway” model is formulated which posits high-
way entrance and exit hubs, and highway traffic between
the entrances and exits. The model’s structure is based on
an analogy with car traffic from a local origin in one city
to a destination in another city. The model’s parameters
correspond to an onramp traffic distribution from sources
to highway entrances, the highway traffic distribution be-
tween entrances and exits, and an offramp traffic distribu-
tion from highway exits to final destinations. The highway
traffic model extracts community structure based on source-
destination traffic information, but in addition captures the
aggregate “highway” traffic between the communities. This
important distinction extends the highway traffic analysis
beyond clustering and allows it to extract out underlying
backbone traffic structure from traffic data. For compari-
son, we also describe a “hub” traffic model with no high-
ways which has a latent variable structure that has been
well studied in the past.

1. INTRODUCTION

Traffic engineering and network design have been exten-
sively studied in the engineering communities. The inves-
tigations cover how best to route traffic based on an exist-
ing connectivity graph, and optimizing connectivity paths
to best fit the traffic. Source-destination traffic matrix esti-
mation has been addressed from a statistical perspective in
e.g.[1][2]. Here we present a probabilistic “highway” traf-
fic model of source-destination traffic. Our goal in the anal-
ysis is to model both the underlying community structure
and the aggregate traffic between communities. Viewing
the source-destination traffic matrix as a weighted graph,
we seek to discover both tightly connected regions in the

graph, and an underlying “highway” backbone structure in
the graph.

Our analysis extends latent variable models which have
appeared under the names Latent Class Models [3], Aggre-
gate Markov Models [4]-[6], Non-negative Matrix Factor-
ization (NMF)[7], and probabilistic LSA (pLSA)[8]. Many
of the recent applications of these models have been in
the fields of natural language processing and information
retrieval. These latent variable models when applied to
source-destination traffic data translate into a “hub” traf-
fic model with only onramp and offramp traffic to latent
hubs. The highway traffic latent variable model contains
both highway entrance and exit hubs, and highway traffic
between them. This allows the model to find both tightly
interconnected communities, and the traffic flow between
them. In addition to the analysis of source-destination traf-
fic data, the highway traffic model is applicable to the anal-
ysis of random walk traffic on a source-destination connec-
tivity graph. In related work, spectral clustering based on
finding communities which minimize transitions between
different communities has received considerable attention
in image segmentation[9][10].

An outline of this paper is as follows. First we describe
the highway traffic model and it’s relation to a hub traffic
model. Section 3 presents comparative analysis of the high-
way and hub traffic models for the analysis of traffic on an
autonomous system connectivity graph and computer skills
graph. Section 4 presents a symmetric hub traffic model.
The paper concludes with a discussion of some properties
of the highway traffic model.

2. Highway and Hub Traffic Models

Consider traffic flow data consisting of nij counts of traf-
fic from source X = i to destination X ′ = j. We assume
that all sources are destinations, and destinations sources.
Discrete latent variables H and H ′ are introduced which
characterize the underlying entrance hubs and exit hubs on
the highway. We assume that all entrances are exits, and
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vice versa. Our model of traffic flow consists of onramp
traffic from sources to highway entrances, highway traffic
from entrances to exits, and offramp traffic from highway
exits to destinations. The model assigns a probability of
going from source i to destination j of:

p(i, j) =
∑
k,l

αikβklγjl,

where αik = P (X = i|H = k), βkl = P (H = k,H ′ = l),
and γjl = P (X ′ = j|H ′ = l). In words, αik is the fraction
of traffic at entrance k from source i, βkl is the probability
of going from entrance k to exit l on the highway, and γjl

is the fraction of traffic at exit l that proceed to destination
j. The double sum in the expression is over all highway en-
trances and exits. Note that the traffic model is probabilis-
tic, and in general allows for more than one highway route
from source to destination. We further impose a constraint
equating the onramp and offramp traffic distributions:

γjl = αjl.

Thus the fraction of traffic at exit l which continue to desti-
nation j is equal to the fraction of traffic at entrance l which
originate from j. The model parameters are specified by
α(x|h) = P (x|h) and β(h, h′) = P (h, h′), which spec-
ify respectively the onramp/offramp traffic distribution, and
highway traffic between the entrances and exits. Let the to-
tal amount of observed traffic be N =

∑
i,j nij , and let

p̃ij = nij/N be the observed empirical joint distribution
p̃(x = i, x′ = j). The log-likelihood function is given by

L = N
∑
x,x′

p̃(x, x′) log[
∑
h,h′

α(x|h)β(h, h′)α(x′|h′)].

Maximizing the likelihood of the observed source-
destination traffic counts is equivalent to minimizing the
following Kullback-Leibler divergence:

D(p̃(x, x′) ‖
∑
h,h′

α(x|h)β(h, h′)α(x′|h′)).

The EM algorithm gives the following update equations
E-step

q(h, h′|x, x′) =
p(x, x′, h, h′)∑
hh′ p(x, x′, h, h′)

where p(x, x′, h, h′) = α(x|h)β(h, h′)α(x′|h′).
M-step

α(x|h) =
p̃(X = x,H = h) + p̃(X ′ = x,H ′ = h)

p̃(H = h) + p̃(H ′ = h)
.

β(h, h′) = p̃hh′ ,

where p̃xh, p̃x′h′ , p̃h, p̃h′ , and p̃hh′ are the corresponding
marginals of p̃xx′q(h, h′|x, x′).

Representing the model parameters α and β as matrices,
the highway traffic model seeks an approximation of the
empirical traffic distribution p̃ by minimizing

D(p̃ ‖ αβαt).

In comparison, a traffic model with the same structure as
pLSA/NMF [4][7][8] seeks to minimize

D(p̃ ‖ AB).

The traffic interpretation of this model, which will be re-
ferred to as the “hub” traffic model, consists of an onramp
distribution to the hubs from the sources, the hub distri-
butions, and the offramp distributions from hubs to des-
tinations. The highway model assumes more structure in
the traffic data, and is a constrained version of the hub
model. In particular, a highway model can always be rep-
resented as a hub model by equating corresponding terms
in (αβ)(αt) = (A)(B), effectively folding in the highway
traffic between entrances and exits into the onramp traffic
distribution specified by A. This comes at the cost of re-
duced sparseness of the onramp traffic distribution, and an
increase in complexity of the hub model. Without equating
onramp to offramp traffic in the highway model, the high-
way traffic has extra degrees of freedom since we can al-
ways write αβγ = (αβ)(I)(γ). Here the onramp traffic
incorporates the highway traffic, and now there is no cross-
traffic between entrances and exits. By equating onramp to
offramp traffic, these degrees of freedom are removed in the
highway traffic term β.

The highway and hub traffic models differ in complexity,
sparseness and structure. In Section 3.1, the highway and
hub traffic models will be compared using the Akaike Infor-
mation Criterion (AIC) and Bayesian Information Criterion
(BIC) scores, as well as predictive test-set log-likelihoods.
In Section 3.2, we demonstrate the extraction of a highway
backbone structure in a random walk traffic matrix.

3. Numerical Experiments

3.1 Synthetic graph analysis

We start with a simple example analysis which eluci-
dates the highway traffic model’s ability to find communi-
ties and their interrelations. A simple synthetic graph con-
sisting traffic between 12 nodes is depicted on the left in
Figure 1. Directed edges correspond to one traffic count in
the given direction, whereas undirected edges represent a
traffic count in both directions. The empirical joint source-
destination distribution for the graph has exact decomposi-
tions according to both the highway and hub traffic mod-
els, with zero KL-divergences. Thus, the comparison here
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Figure 1. Synthetic graph decomposition
based on the highway traffic model. The
decomposition consist of four subgraphs of
tightly knit communities and four subgraphs
of relations between the communities.
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Figure 2. The highway model’s on-
ramp/offramp distribution (left), highway
traffic β (center), and highway traffic visual-
ization (right).

is in terms of the structure each model extracts from the
data. For the highway model, the EM algorithm described
above is run for 100 iterations starting from random initial-
izations for α(x|h) and β(h, h′). The algorithm often finds
the exact decomposition as shown in the figure. The exact
decomposition of the graph consists of k = 4 fully con-
nected communities consisting of 3 nodes each, given by
α(x|h = i)β(h = i, h′ = i)α(x′|h′ = i). These are de-
picted in the top four subgraphs on the right in Figure 1. In
addition, the relations between the communities, as given
by α(x|h = i)β(h = i, h′ = j)α(x′|h′ = j), is depicted on
in the bottom four subgraphs.

In Figure 2, the onramp/offramp distribution parameter
α, and the highway traffic parameter β are displayed. In ad-
dition, a binary representation of the graph’s highway back-
bone structure is visualized by thresholding β. For com-
parison, we fit a hub traffic model to the data. The corre-
sponding graph decomposition if shown in Figure 3. The
hub model all traffic within communities together with all
outbound traffic from that community. The hub model es-
sentially incorporated the highway traffic distribution into
the offramp distribution.
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Figure 3. Synthetic graph decomposition
based on the hub traffic model.

The highway model’s analysis of this simple traffic
graph successfully captures the tightly knit communities
and their interrelations. In addition, the highway traffic ma-
trix β(h, h′) describes the highway backbone traffic struc-
ture in the data.

3.2. Autonomous system connectivity graph

We analyzed simulated internet traffic data based on
an undirected connectivity graph between Autonomous
Systems (AS). The connectivity graph consists of AS
paths in BGP routing tables collected by the server
route-views.oregon-ix.net. This data is the basis of the
power-law analysis in [11], and is publicly available at
http://topology.eecs.umich.edu/data.html. After trimming
out nodes with no edges, we are left with an undirected bi-
nary AS connectivity graph with 13233 interconnected AS
nodes.

We compared the highway traffic model to the hub traf-
fic model normalizing for the complexity differences of the
two models. With k latent hub states in the hub model, and
n sources/destinations, the hub model has [2k(n−1)+k−1]
parameters. In contrast, the highway model with the same
number k or entrances/exits contains only [k(n−1)+k2−1]
parameters. We compared the two models using the Akaike
Information Criterion (AIC), Bayesian Information Crite-
rion (BIC), and predictive test-set log-likelihoods. The sim-
ulated traffic data was constructed as follows. For the train-
ing set, we performed 100000 single random walk steps
on the connectivity graph. The 100000 source nodes were
sampled in accordance with the stationary distribution of
the random walk on the connectivity graph. Traffic from
source nodes are assumed to follow each of the edge paths
with equal probability. Since multinomial mixture models
can be prone to over-fitting problems, we added a single
pseudo-count traffic for each edge in the connectivity graph.
If traffic from a source to a destination is not observed in
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the test set, but appears in the training set, the traffic models
may assign zero probability to the test set likelihood. Early
stopping will effectively stop parameter updates if an up-
date assigns zero probability to a traffic path that appears
in the test set. An additional inverse annealing (heating) is
used in [8] to smooth multinomial parameters and prevent
sparseness. For the test set, 20000 single random walk steps
were simulated.

In Table 1 the AIC and BIC scores for the highway and
hub models are tabulated for a number of different k val-
ues. For each model and each k, 10 EM runs with random
parameter initializations are performed. Scores for the best
respective runs are reported in the table. The highway traffic
model has significantly better (lower) AIC and BIC scores
than the hub traffic model.

values ×106 k=26 k=51 k=100 k=197

Highway AIC 4.90 5.41 6.59 9.07
Hub AIC 5.56 6.72 9.16 14.15

Highway BIC 8.34 12.2 19.9 35.0
Hub BIC 12.4 20.2 35.5 66.1

Table 1. AIC and BIC scores for the highway
and hub models.

We also compared predictive test-set log-likelihoods for
a highway model and hub model with comparable degrees
of freedom. Comparing the k = 51 highway model with
677432 parameters with the k = 26 hub model with 688089
parameters, the best test set log-likelihoods (×105) were
−2.64 and −2.74 for the highway and hub models re-
spectively. Comparing the k = 100 highway model with
1333199 parameters with the k = 51 hub model with
1349714 parameters, the best test set log-likelihood(×105)
were −2.55 and −2.63 respectively. Finally, the k = 197
highway model with 2645512 parameters and the k = 100
hub model with 2646499 parameters had best test set log-
likelihoods(×105) of −2.46 and −2.54 respectively. In all
three comparisons, the highway model had slightly fewer
parameters, but significantly higher (less negative) predic-
tive test set log-likelihoods.

3.3. Random walk traffic on computer skills graph

Aside from complexity and sparseness considerations,
the highway model extracts underlying backbone traffic
structure which clustering models like the hub model does
not. We analyzed a smaller, more easily interpretable data
set to try to find communities and the relationships between
the communities. A computer jobs description data set, pro-
vided courtesy of Prof. Richard Martin and the IT consult-
ing firm Comrise was analyzed. The raw data consists of

a collection of computer job descriptions, each of which
contain a subset of 159 computer skills the hiring manager
considered important for the job. The most frequently oc-
curring skills keywords in the job descriptions are “unix”,
“pc(ibm)”, “windows95”, “windowsnt”, “c” and “oracle”.
Entries along the diagonal of the co-occurrence matrix con-
tain the number of times each skill occurred over all the
job descriptions. The elements of this matrix is interpreted
as a the amount of (co-occurrent) traffic between pairs of
job skills. This interpretation is equivalent to the normal-
ization used in the random walk view of segmentation [9].
From the co-occurrent traffic information on the computer
skills graph, we seek to extract out underlying computer
skill topic communities, and the underlying backbone con-
nectivity structure between the topic communities.

A visualization of the computer skills traffic graph is
shown in Figure 4(a) using the GraphViz [12] spring model
graph layout program from AT&T Labs-Research. Only
edge connections with average transition probability greater
than .085 are shown. Even though the graph is not very
large with 159 nodes, the visualization is not easily read-
able, and only provides vague clues to relationships be-
tween various skills.

From the job skills co-occurrence table the observed em-
pirical joint distribution p̃xx′ is constructed. The EM algo-
rithm is used to find the maximum likelihood estimators for
the conditional α(x|h) and the joint β(h, h′).

Since the onramp and offramp traffic distributions are
equal in the highway model, we will simply refer to the
offramp traffic. The offramp traffic distribution from a few
exits are tabulated in Table 2 This specifies the fraction of
traffic at the specified exit which flow to each destination
node. The destination computer skill with the largest traf-
fic fraction is used as the label for the exit. The five top
skills, ranked in descending order of their conditional prob-
abilities are shown for each exit. From Table 2, we see a
UNIX skills community containing Unix, C and C++, and
a SUNOS operating systems community containing SunOS,
solaris and sunsparc, and an HP cluster with HP, HP-UX.
The model also identified skills groups affiliated with Mi-
crosoft, containing skills PC(IBM), Windows95, MSoffice,
MSproject and dos, and a Java group (not tabulated) con-
taining javascript, perl, cgi and html.

In addition to the communities of related computer skills,
the model also extracts out the relationships between the
communities. In Figure 4(b), we used GraphViz [12] to
visualize the underlying highway traffic between entrance
and exit hubs as defined by β(h, h′). This backbone traffic
structure in the source-destination traffic data is visualized
by thresholding β(h, h′) into a binary adjacency matrix. We
emphasize that this is only for visualization purposes; the
model contains more information than is visualized. From
the highway traffic graph, we see tightly coupled highway
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Figure 4. (a) Graph layout of the computer skills traffic graph using GraphViz’s spring model layout
algorithm. (b) Highway traffic visualization - each node in this graph is a highway entrance or exit
hub, and corresponds to a computer skills community. Onramp and offramp distributions to sources
and destinations are tabulated in Table 2.

Unix .156 SunOS .174 HP .181 pc/ibm .214

c .154 solari .169 hp-ux .146 win95 .184
c++ .123 tuxedo .016 tcpip .076 msoff .146
syb .050 sunspa .009 nis .008 mspro .050
jam .004 oa&m .007 nfs .007 dos .027

Table 2. Onramp/offramp traffic distribution
for highway traffic model. The skills with
highest traffic fraction to/from the latent
states are listed in the first row, and used to
label the clusters in Figure 4(b). Each column
represents an entrance/exit hub. Fractions of
traffic to/from each skill is listed next to the
skill name.

traffic between the Unix, SunOS, HP communities, as well
as the Java and SunOS communities. The highway traf-
fic model successfully finds computer skills communities
as well as the relationships between the communities.

4. Symmetric Hub Traffic Model

The highway traffic model assumes that the traffic is
generated from an underlying highway traffic distribution,
onramp traffic distributions from sources to highway en-
trances, and an identically distributed offramp distribution

from highway exits to destinations. In contrast, the hub traf-
fic model only has onramp and offramp distributions, and
no analog of highway traffic. As discussed in Section 2,
the hub model contains the highway model as a special
case, where the composition of the onramp and highway
traffic is subsumed into a single onramp traffic distribution
for the hub model. Using the hub model to describe traffic
data comes at the complexity cost of roughly double (for
n >> k) the number of parameters as the highway model.
An even more restrictive traffic model can be defined by
equating onramp and offramp traffic distributions in the hub
model. A model with this structure was first investigated in
[14]. This “symmetric hub” model can be obtained from the
highway model by constraining β(h, h′) to be diagonal.

We assume the traffic flow in the empirical joint dis-
tribution p̃(x, x′) is symmetric with respect to x and x′.
This implies that the transition matrix p̃(x′|x) is consistent
with a reversible random walk. Instead of minimizing the
Kullback-Leibler divergence for the highway traffic model:

D(p̃(x, x′) ‖
∑
h,h′

α(x|h)β(h, h′)α(x′|h′)),

the symmetric hub model minimizes

D(p̃(x, x′) ‖
∑
h,h′

α(x|h)β(h)α(x′|h′)).

The EM algorithm for this model results in the iterations:
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E-step

p(h|x, x′) =
α(x|h)α(x′|h)β(h)∑
h α(x|h)α(x′|h)β(h)

M-step
β(h) =

∑
x′,x

p(h|x, x′)p̃(x′, x),

α(x|h) =
∑
x′

p(h|x, x′)p̃(x′, x)

β(h)
.

This symmetric hub model is a constrained version of
both the hub model, and the highway model as follows.
First, the symmetric hub model can be seen as a hub model
with identically distributed onramp and offramp distribu-
tions. Second, the symmetric hub model is a highway model
with the constraint of no traffic between the entrance/exit
hubs.

This model does not directly capture relationships be-
tween communities since it does not directly model traffic
between hub communities. However, it can describe traffic
between hubs after two time steps of the empirical source-
destination transition. An inter-hub traffic can be specified
by combining the offramp traffic from hubs to destinations
during the first time step, with the onramp traffic from des-
tinations back to the hubs during the second time step. This
is computed as follows:

p(h, h′) =
∑

x

α(x|h)β(h)α(x|h′).

This 2-step inter-hub traffic layout for the computer skills
data is shown in Figure 5, with the onramp/offramp distri-
butions tabulated in Tables 3 and 4. The skills topic commu-
nities successfully combine unix groups, windows groups
and programming language groups, while the inter-hub traf-
fic successfully represents the relationships between topic
groups.

SunOS .172 HP .168 C++ .147
unix .145 hp-ux .139 C .067
solaris .142 tcp/ip .080 ood .060
tuxedo .016 nis .009 nmake .031
sunsparc .010 nfs .008 dec .007

Table 3. Onramp/offramp traffic distribution
for highway traffic model the hub traffic
model in Figure 5.

5. Highway traffic model properties

The source-destination traffic data analyzed in this paper
either directly translated into symmetrical empirical joint
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Figure 5. Symmetric hub model inter-hub traf-
fic graph.

PC(IBM) .235 windowsnt .147 msexcel .101
win95 .197 dos .068 msword .074
msoffice .123 visualc++ .060 outlook .011
lot-notes .014 visualbasic .031 visio .011
mac .002 vbscript .007 isdn .009

Table 4. Continuation of onramp/offramp traf-
fic distribution for Figure 5.

distributions (computer skills), or were simulated from a
reversible random walk (AS traffic). The highway traf-
fic model on the other hand can in general describe non-
symmetric traffic data. Looking at the model in more detail,
the equating of the onramp with the offramp traffic distribu-
tion in the model results in the following conditional distri-
bution within each community:

p(x, x′|h = h′) = α(x|h)α(x′|h).

This is the highway model’s predicted probability of tran-
siting from source x to highway entrance h, and immedi-
ately exiting to destination x′. This conditional distribution
matrix has rank 1 and satisfies the detailed balance condi-
tion. Thus, within each community, the random walk traf-
fic is symmetric, and one can show that πh(x) = α(x|k)
is simply the stationary distribution of the random walk
within each community. Even though the random walk
within each community is reversible, the highway model
can model non-reversible traffic depending on the highway
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traffic distribution β(h, h′).
If the highway traffic β(h, h′) between communities is

symmetric with respect to source community (entrance)
and destination community (exit), thereby satisfying the de-
tailed balance condition, then the highway model describes
symmetric source-destination traffic. One can verify that if
the empirical traffic distribution is symmetric, and the high-
way traffic distribution β(h, h′) is initialized symmetric,
then it will remain symmetric under all subsequent updates
under the EM algorithm. Thus reversible source-destination
traffic will be modeled with a reversible highway traffic
model.

The traffic model approximates the empirical traffic
flow in a maximum likelihood or minimum KL-divergence
sense. For example, an approximation of the source
traffic distribution can be obtained as follows. Let the
source distribution of the highway traffic model be π(x) =∑

h,h′ α(x|h)β(h, h′). Using Pinsker’s inequality [13] we
can bound the total variation distance between the empiri-
cal source distribution p̃(x) and the source distribution of
the highway model π(x)

∑
x,x′

|p̃(x) − π(x)|

≤
√

2D(p̃(x) ‖ π(x))

≤

√
2D(p̃(x, x′) ‖

∑
h,h′

α(x|h)β(h, h′)α(x′|h′)).

Similarly, the highway model can approximate any empir-
ical traffic flow from a source set of nodes to a destination
set, with the KL-divergence providing a bound on the ap-
proximation error.

6. Discussion

The symmetric hub model, highway model, and hub
model are constructed with various structures and associ-
ated complexities in the multinomial mixture. This is anal-
ogous to controlling the covariance structure in Gaussian
distributions, from spherical Gaussian, to Graphical Gaus-
sian models and Factor Analysis, to the full Gaussian with
arbitrary covariance structure.

We compared the highway and hub traffic models us-
ing the Akaike Information Criterion and also test set log-
likelihood for the ASP data set. The suitability of each traf-
fic model clearly depend on the underlying structure of the
empirical source-destination traffic. Consider for example,
source-destination car traffic. One could conceivably build
a road system based on the hub traffic model, with onramps
from origins to k underlying hubs, and offramps to the des-
tinations. This could capture a highway traffic model dis-
tribution with k cities, and highway traffic between them.

However, the added complexity of the hub model comes at
the significant cost of building non-sparse onramps or of-
framps. In the extreme limit, one could build roads between
all origins and destinations with empirical traffic counts.
The benefit of the highway model is in the aggregation of
traffic flow along an underlying highway infrastructure. An
important consideration in comparing the models should be
sparseness of the resulting traffic model. There will in gen-
eral be domain specific sparseness related cost functions to
consider.

Hub models with the same probabilistic structure as
pLSA/NMF have been applied in the information retrieval
setting to decompose document-word matrices [7][8] and
document-citation matrices [15]. In those settings, pLSA
does not provide a probabilistic generative model, and
is not able to cleanly assign predictive probabilities to
new documents. Latent Dirichlet Allocation [16] im-
proves on pLSA by providing a proper generative model.
In the source-destination traffic setting we consider, the
sources/destinations constitute a fixed set, and the traffic
models properly defines probabilities for new traffic be-
tween the sources and destinations. The traffic models are
properly defined probabilistic models of source destination
traffic. Over-fitting however, can be a problem. Specifically,
if traffic from a source to a destination is not observed in
the test set, but appears in the training set, the traffic models
may assign zero probability to the test set likelihood. One
can use smoothing or incorporate priors over the multino-
mial parameters.

In summary, the highway model extracts out communi-
ties and relational information in the form of highway traf-
fic between the communities. It is related to spectral clus-
tering algorithms where the interest is in finding communi-
ties of nodes with minimal traffic between the communities
[9][10]. The highway traffic model extends the framework
of minimizing traffic flow between communities and pro-
vides a low rank highway based approximation to the em-
pirical source-destination traffic. In the relational data re-
search field, models have been investigated in the context
of binary link detection [17], binary relational modeling
[18], and in a supervised learning context for link predic-
tion. [19]. We are pursuing extensions of the highway traf-
fic model to address the selection of the number of highway
entrances/exits, as well as traffic models with highways and
freeways. The highway model can also be extended from
an unsupervised to a semi-supervised setting with some ob-
servations of highway and onramp/offramp traffic counts.
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