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Abstract

We present an extension of the fuzzy c-Means algorithm
that operates on different feature spaces, so-called parallel
universes, simultaneously and also incorporates noise de-
tection. The method assigns membership values of patterns
to different universes, which are then adopted throughout
the training. This leads to better clustering results since
patterns not contributing to clustering in a universe are
(completely or partially) ignored. The method also uses an
auxiliary universe to capture patterns that do not contribute
to any of the clusters in the real universes and therefore
likely represent noise. The outcome of the algorithm are
clusters distributed over different parallel universes, each
modeling a particular, potentially overlapping, subset of the
data and a set of patterns detected as noise. One poten-
tial target application of the proposed method is biological
data analysis where different descriptors for molecules are
available but none of them by itself shows global satisfac-
tory prediction results. In this paper we show how the fuzzy
c-Means algorithm can be extended to operate in parallel
universes and illustrate the usefulness of this method using
results on artificial data sets.

1 Introduction

In recent years, researchers have worked extensively in
the field of cluster analysis, which has resulted in a wide
range of (fuzzy) clustering algorithms [7, 8]. Most of the
methods assume the data to be given in a single (mostly
high-dimensional numeric) feature space. In some appli-
cations, however, it is common to have multiple represen-
tations of the data available. Such applications include bi-
ological data analysis, in which, e. g. molecular similar-
ity can be defined in various ways. Fingerprints are the
most commonly used similarity measure. A fingerprint in
a molecular sense is a binary vector, whereby each bit indi-
cates the presence or absence of a molecular feature. The
similarity of two compounds can be expressed based on

their bit vectors using the Tanimoto coefficient for exam-
ple. Other descriptors encode numerical features derived
from 3D maps, incorporating the molecular size and shape,
hydrophilic and hydrophobic regions quantification, surface
charge distribution, etc. [5]. Further similarities involve the
comparison of chemical graphs, inter-atomic distances, and
molecular field descriptors. However, it has been shown
that often a single descriptor fails to show satisfactory pre-
diction results [13].

Other application domains include web mining where
a document can be described based on its content and
on anchor texts of hyperlinks pointing to it [4]. Parts in
CAD-catalogues can be represented by 3D models, poly-
gon meshes or textual descriptions. Image descriptors can
rely on textual keywords, color information, or other prop-
erties [9].

In the following we denote these multiple represen-
tations, i. e. different descriptor spaces, as Parallel Uni-
verses [11, 16], each of which having representations of
all objects of the data set. The challenge that we are fac-
ing here is to take advantage of the information encoded in
the different universes to find clusters that reside in one or
more universes each modeling one particular subset of the
data. In this paper, we develop an extended fuzzy c-Means
(FCM) algorithm [1] with noise detection that is applica-
ble to parallel universes, by assigning membership values
from objects to universes. The optimization of the objective
function is similar to the original FCM but also includes the
learning of the membership values to compute the impact
of objects to universes.

In the next section, we will discuss in more detail the
concept of parallel universes; section 3 presents related
work. We formulate our new clustering scheme in section 4
and illustrate its usefulness with some numeric examples in
section 5.

2 Parallel Universes

We consider parallel universes to be a set of feature
spaces for a given set of objects. Each object is assigned



a representation in each single universe. Typically, par-
allel universes encode different properties of the data and
thus lead to different measures of similarity. (For instance,
similarity of molecular compounds can be based on surface
charge distribution or fingerprint representation.) Note, due
to these individual measurements they can also show differ-
ent structural information and therefore exhibit distinctive
clustering. This property differs from the problem setting
in the so-called Multi-View Clustering [3] where a single
universe, i. e. view, suffices for learning but the aim is on
binding different views to improve the classification accu-
racy and/or accelerating the learning process.

Note, the concept of parallel universes is not related
to Subspace Clustering [10], even though it seems so at
first. Subspace clustering algorithms seek to identify dif-
ferent subspaces, i. e. subsets of input features, in a dataset.
This becomes particularly useful when dealing with high-
dimensional data, where often, many dimensions are irrel-
evant and can mask existing clusters in noise. The main
goal of such algorithms is therefore to uncover clusters and
subspaces containing only a small, but dense fraction of the
data, whereas the clustering in parallel universes is given
the definition of all data in all universes and the goal is to
exploit this information.

The objective for our problem definition is on identifying
clusters located in different universes whereby each cluster
models a subset of the data based on some underlying prop-
erty.

Since standard clustering techniques are not able to cope
with parallel universes, one could either restrict the analysis
to a single universe at a time or define a descriptor space
comprising all universes. However, using only one partic-
ular universe omits information encoded in the other repre-
sentations and the construction of a joint feature space and
the derivation of an appropriate distance measure are cum-
bersome and require great care as it can introduce artifacts.

3 Related Work

Clustering in parallel universes is a relatively new field
of research. In [9], the DBSCAN algorithm is extended and
applied to parallel universes. DBSCAN uses the notion of
dense regions by means of core objects, i. e. objects that
have a minimum number k of objects in their (ε-) neighbor-
hood. A cluster is then defined as a set of (connected) dense
regions. The authors extend this concept in two different
ways: They define an object as a neighbor of a core object
if it is in the ε-neighborhood of this core object either (1) in
any of the representations or (2) in all of them. The clus-
ter size is finally determined through appropriate values of
ε and k. Case (1) seems rather weak, having objects in one
cluster even though they might not be similar in any of the
representational feature spaces. Case (2), in comparison,

is very conservative since it does not reveal local clusters,
i. e. subsets of the data that only group in a single universe.
However, the results in [9] are promising.

Another clustering scheme called “Collaborative fuzzy
clustering” is based on the FCM algorithm and was intro-
duced in [12]. The author proposes an architecture in which
objects described in parallel universes can be processed to-
gether with the objective of finding structures that are com-
mon to all universes. Clustering is carried out by applying
the c-Means algorithm to all universes individually and then
by exchanging information from the local clustering results
based on the partitioning matrices. Note, the objective func-
tion, as introduced in [12], assumes the same number of
clusters in each universe and, moreover, a global order on
the clusters which is very restrictive due to the random ini-
tialization of FCM.

A supervised clustering technique for parallel universes
was given in [11]. It focuses on a model for a particu-
lar (minor) class of interest by constructing local neighbor-
hood histograms, so-called Neighborgrams for each object
of interest in each universe. The algorithm assigns a quality
value to each Neighborgram and greedily includes the best
Neighborgram, no matter from which universe it stems, in
the global prediction model. Objects that are covered by
this Neighborgram are finally removed from consideration
in a sequential covering manner. This process is repeated
until the global model has sufficient predictive power.

Blum and Mitchell [4] introduced co-training as a semi-
supervised procedure whereby two different hypotheses are
trained on two distinct representations and then bootstrap
each other. In particular they consider the problem of classi-
fying web pages based on the document itself and on anchor
texts of inbound hyperlinks. They require a conditional in-
dependence of both universes and state that each representa-
tion should suffice for learning if enough labeled data were
available. The benefit of their strategy is that (inexpensive)
unlabeled data augment the (expensive) labeled data by us-
ing the prediction in one universe to support the decision
making in the other.

Other related work includes reinforcement cluster-
ing [15] and extensions of partitioning methods—such as
k-Means, k-Medoids, and EM—and hierarchical, agglom-
erative methods, all in [3].

4 Clustering Algorithm

In this section, we introduce all necessary notation, re-
view the FCM [1, 6] algorithm and formulate a new ob-
jective function that is suitable to be used for parallel uni-
verses. The technical details, i. e. the derivation of the ob-
jective function, can be found in the appendix.

In the following, we consider U , 1 ≤ u ≤ U , par-
allel universe, each having representational feature vec-



tors for all objects ~xi,u = (xi,u,1, . . . , xi,u,a, . . . xi,u,Au)
with Au the dimensionality of the u-th universe. We de-
pict the overall number of objects as |T |, 1 ≤ i ≤ |T |.
We are interested in identifying cu clusters in universe
u. We further assume appropriate definitions of distance
functions for each universe du (~wk,u, ~xi,u)2 where ~wk,u =
(~wk,u,1, . . . , ~wk,u,a, . . . ~wk,u,Au) denotes the k-th prototype
in the u-th universe.

We confine ourselves to the Euclidean distance in the fol-
lowing. In general, there are no restrictions to the distance
metrics other than the differentiability. In particular, they
do not need to be of the same type in all universes. This is
important to note, since we can use the proposed algorithm
in the same feature space, i. e. ~xi,u1 = ~xi,u2 for any u1 and
u2, but different distance measure across the universes.

4.1 Formulation of new objective function

A standard FCM algorithm relies on one feature space
only and minimizes the accumulated sum of distances be-
tween patterns ~xi and cluster centers ~wk, weighted by the
degree of membership to which a pattern belongs to a clus-
ter. We refer here to an objective function that also includes
noise detection [6]. Note that we omit the subscript u here,
as we consider only one universe:

Jm =
|T |∑
i=1

c∑
k=1

vm
i,k d (~wk, ~xi)

2

+ δ2

|T |∑
i=1

(
1−

c∑
k=1

vi,k

)m

. (1)

The coefficient m ∈ (1,∞) is a fuzzyfication parameter,
and vi,k the respective value from the partition matrix, i. e.
the degree to which pattern ~xi belongs to cluster k. The
last term serves as a noise cluster; all objects have an fixed,
user-defined distance δ2 to it. Objects that are not close to
any cluster center ~wk are therefore detected as noise.

This function is subject to minimization under the con-
straint

∀ i :
c∑

k=1

vi,k ≤ 1 , (2)

requiring that the coverage of any pattern i needs to accu-
mulate to at most 1 (the remainder to 1 represents the mem-
bership to the noise cluster).

The above objective function assumes all cluster candi-
dates to be located in the same feature space and is therefore
not directly applicable to parallel universes. To overcome
this, we introduce a matrix (zi,u), 1 ≤ i ≤ |T |, 1 ≤ u ≤ U ,
encoding the membership of patterns to universes. A value
zi,u close to 1 denotes a strong contribution of pattern ~xi to

the clustering in universe u, and a smaller value, a respec-
tively lesser degree. zi,u has to satisfy standard require-
ments for membership degrees: it must accumulate to at
most 1 considering all universes and must be in the unit in-
terval.

The new objective function is given with

Jm,n =
|T |∑
i=1

U∑
u=1

zn
i,u

cu∑
k=1

vm
i,k,udu (~wk,u, ~xi,u)2

+ δ2

|T |∑
i=1

(
1−

U∑
u=1

zi,u

)n

. (3)

Parameter n ∈ (1,∞) allows (analogous to m) to have im-
pact on the fuzzyfication of zi,u: The larger n the more
equal the distribution of zi,u, giving each pattern an equal
impact to all universes. A value close to 1 will strengthen
the composition of zi,u and assign high values to universes
where a pattern shows good clustering behavior and small
values to those where it does not. Note, we now have U
different partition matrices (vi,k) to assign membership de-
grees of objects to cluster prototypes. Similar to the ob-
jective function (1), the last term’s role is to “localize” the
noise and place it in a single auxiliary universe. By assign-
ing patterns to this noise universe, we declare them to be
outliers in the data set. The parameter δ2 reflects the fixed
distance between a virtual cluster in the noise universe and
all data points. Hence, if the minimum distance between a
data point and any cluster in one of the universes becomes
greater than δ2, the pattern is labeled as noise.

As in the standard FCM algorithm, the objective func-
tion has to fulfill side constraints. The coverage of a pattern
among the partitions in each universe must accumulate to 1:

∀ i, u :
cu∑

k=1

vi,k,u = 1 . (4)

This is similar to the constraint of the single universe FCM
in (2) but requires to a strict sum of 1 since we do not have
a noise cluster in each universe.

Additionally, as mentioned above, the membership of a
pattern to different universes has to be at most 1, i. e.

∀ i :
U∑

u=1

zi,u ≤ 1 . (5)

The remainder to 1 encodes the membership to the noise
cluster mentioned above.

The minimization is done with respect to the parameters
vi,k,u, zi,u, and ~wk,u. Since the derivation of the objective
function is more of technical interest, please refer to the
appendix for details.

The optimization splits into three parts. The optimization
of the partition values vi,k,u for each universe; determining



the membership degrees of patterns to universes zi,u and
finally the adaption of the center vectors of the cluster rep-
resentatives ~wk,u.

The update equations of these parameters are given
in (6), (7), and (8). For the partition values vi,k,u, it fol-
lows

vi,k,u =
1

cu∑̄
k=1

(
du(~wk,u,~xi,u)2

du(~wk̄,u,~xi,u)2

) 1
m−1

. (6)

Note, this equation is independent of the values zi,u and
is therefore identical to the update expression in the single
universe FCM. The optimization with respect to zi,u yields

zi,u =
1

U∑̄
u=1

( ∑cu

k=1
vm

i,k,u
du(~wk,u,~xi,u)2∑cū

k=1
vm

i,k,ū
dū(~wk,ū,~xi,ū)2+δ2

) 1
n−1

, (7)

and update equation for the adaption of the prototype vec-
tors ~wk,u is of the form

wk,u,a =

∑|T |
i=1 zn

i,u vm
i,k,u xi,u,a∑|T |

i=1 zn
i,u vm

i,k,u

. (8)

Thus, the update of the prototypes depends not only on the
partitioning value vi,k,u, i. e. the degree to which pattern i
belongs to cluster k in universe u, but also to zi,u repre-
senting the membership degrees of patterns to the current
universe of interest. Patterns with larger values zi,u will
contribute more to the adaption of the prototype vectors,
while patterns with a smaller degree accordingly to a lesser
extent.

Equipped with these update equations, we can introduce
the overall clustering scheme in the next section.

4.2 Clustering algorithm

Similar to the standard FCM algorithm, clustering is car-
ried out in an iterative manner, involving three steps:

1. Update of the partition matrices (v)

2. Update of the membership degrees (z)

3. Update of the prototypes (~w)

More precisely, the clustering procedure is given as:

(1) Given: Input pattern set described in U parallel uni-
verses: ~xi,u, 1 ≤ i ≤ |T |, 1 ≤ u ≤ U

(2) Select: A set of distance metrics du (·, ·)2, and the
number of clusters for each universe cu, 1 ≤ u ≤ U ,
define parameter m and n

(3) Initialize: Partition parameters vi,k,u with random
values and the cluster prototypes by drawing sam-
ples from the data. Assign equal weight to all mem-
bership degrees zi,u = 1

U .
(4) Train:
(5) Repeat
(6) Update partitioning values vi,k,u according to (6)
(7) Update membership degrees zi,u according to (7)
(8) Compute prototypes ~wi,u using (8)
(9) until a termination criterion has been satisfied

The algorithm starts with a given set of universe defini-
tions and the specification of the distance metrics to use.
Also, the number of clusters in each universe needs to be
defined in advance. The membership degrees zi,u are ini-
tialized with equal weight (line (3)), thus having the same
impact on all universes. The optimization phase in line (5)
to (9) is—in comparison to the standard FCM algorithm—
extended by the optimization of the membership degrees,
line (7). The possibilities for the termination criterion in
line (9) are manifold. One can stop after a certain number
of iterations or use the change of the value of the objective
function (3) between two successive iterations as stopping
criteria. There are also more sophisticated approaches, for
instance the change to the partition matrices during the op-
timization.

Just like the FCM algorithm, this method suffers from
the fact that the user has to specify the number of proto-
types to be found. Furthermore, our approach even requires
the definition of cluster counts per universe. There are nu-
merous approaches to suggest the number of clusters in the
case of the standard FCM, [17, 14, 2] to name but a few.
Although we have not yet studied their applicability to our
problem definition we do believe that some of them can be
adapted to be used in our context as well.

5 Experimental Results

In order to demonstrate this approach, we generated syn-
thetic data sets with different numbers of parallel universes.
For simplicity we restricted the size of a universe to 2 di-
mensions and generated 2 Gaussian distributed clusters per
universe. We used 70% of the data (overall cardinality 2000
patterns) to build groupings by assigning each object to one
of the universes and drawing its features in that universe
according to the distribution of the cluster (randomly pick-
ing one of the two). The features of that object in the other
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Figure 1. Three universes of a synthetic data set. The top figures show only objects that were
generated within the respective universe (using two clusters per universe). The bottom figures show
all patterns; note that most of them (i. e. the ones from the other two universes), are noise in this
particular universe. They also show the patterns that were not assigned to any of the cluster and
represent noise in all of the universes. For clarification we use different shapes for objects that
originate from different universes.

universes were drawn from a uniform distribution, i. e. they
represent noise in these universes. The remaining 30% of
the overall data was generated to be noise in all universes to
test the ability of the algorithm to identify patterns that do
not cluster at all. Figure 1 shows an example data set with
three universes. The top figures show only the objects that
were generated to cluster in the respective universe. They
define the reference clustering. The bottom figures include
all objects, i. e. patterns that cluster in any of the universes
plus 30% noise, and show the universes as they are pre-
sented to the clustering algorithm. In this example, when
looking solely at one universe, about 3/4 of the data does
not contribute to clustering and therefore are noise in that
universe1.

To compare the results we applied the FCM algorithm
with an auxiliary noise cluster as presented in [6] to the joint
feature space of all universes and set the number of desired
clusters to the overall number of generated clusters. Thus,
the numbers of dimensions and clusters were two times the
number of universes. In order to test the ability of noise
detection we also applied the fuzzy clustering algorithm for
parallel universes without noise universe [16]. The objec-
tive function is similar to (3) but with no explicit notion of

1More precisely 77% which is 2/3 of 70% clustering in other universes
plus 30% overall noise.

noise. The algorithm partitions the data such that each pat-
tern is assigned to one of the clusters.

The cluster membership decision for the single-universe
FCM is based on the highest value of the partition val-
ues, i. e. the cluster to a pattern i is determined by k̄ =
arg max1≤k≤c{vi,k}. If this value is less than the mem-
bership to the noise cluster, vi,k̄ < 1−

∑cu

k vi,k, the pattern
is labeled as noise.

When the universe information is taken into account,
a cluster decision is based on the memberships to uni-
verses zi,u and memberships to clusters vi,k,u. The “win-
ning” universe is determined by ū = arg max1≤u≤U{zi,u}.
If this value is less than the membership degree to the
noise universe, zi,ū < 1 −

∑U
u zi,u, the pattern is la-

beled as noise, otherwise the cluster is calculated as k̄ =
arg max1≤k≤cū{vi,k,cū}.

We used the following quality measure to compare dif-
ferent clustering results [9]:

QK(C) =
∑

Ci∈C

|Ci|
|T |

· (1− entropyK(Ci)) ,

where K is the reference clustering, i. e. the clusters as gen-
erated, C the clustering to evaluate, and entropyK(Ci) the
entropy of cluster Ci with respect to K. This function is 1



Figure 2. Clustering quality for 3 different
data sets. The number of universes ranges
from 2 to 4 universes. Note how the clus-
ter quality of the joint feature space drops
sharply whereas the parallel universe ap-
proach seems less affected. An overall de-
cline of cluster quality is to be expected since
the number of clusters to be detected in-
creases.

if C equals K and 0 if all clusters are completely puzzled
such that they all contain an equal fraction of the clusters
in K or no clusters are detected at all. Thus, the higher the
value, the better the clustering.

Figure 2 summarizes the quality values for 3 experiments
compared to the FCM with noise detection [6] and the fuzzy
clustering in parallel universes with no noise handling [16].
The number of universes ranges from 2 to 4. Clearly, for
this data set, our algorithm takes advantage of the informa-
tion encoded in different universes and identifies the ma-
jor parts of the original clusters. However, when applying
FCM to the joint feature space, most of the data was labeled
as noise. It was noticeable, that the noise detection (30%
of the data was generated such that it does not cluster in
any universe) decreased when having more universes since
the number of clusters—and therefore the chance to “hit”
one of them when drawing the features of a noise object—
increased for this artifical data. As a result, the difference
in quality between our new clustering algorithm which al-
lows noise detection and the clustering algorithm that forces
a cluster prediction declines when having more universes.
This effect occurs no matter how carefully the noise dis-
tance parameter δ2 is chosen.

However, if we have only few universes, the difference
is very obvious. Figure 3 visually demonstrates the clus-
ters from the foregoing example as they are determined by
the fuzzy c-Means algorithm in parallel universes (the three

top figures) and our new algorithm, i. e. with noise detec-
tion (bottom figures). The figures show only the patterns
that build clusters in the respective universe; other patterns,
either covered by clusters in the remaining universes or de-
tected as noise, are filtered out. Note how the clusters in the
top figures are spread and contain patterns that obviously
do not make much sense for this clustering. This is due to
the fact that the algorithm is not allowed to declare such
patterns as outliers: each pattern must be assigned to a clus-
ter. The bottom figures, in comparison, show the clusters
as round-shaped, dense regions. They have been generated
using the new objective function. Patterns that in the top
figures distort the clusters are not included here. It shows
nicely that the algorithm does not force a cluster prediction
and will recognize these patterns as being noise.

We chose this kind of data generation to test the ability
to detect clusters that are blurred by noise. Particularly in
biological data analysis it is common to have noisy data for
which different descriptors are available and each by itself
exhibits only little clustering power. Obviously this is by
no means proof that the method will always detect clusters
spread out over parallel universes but these early results are
quite promising.

6 Conclusion

We considered the problem of unsupervised clustering in
parallel universes, i. e. problems where multiple representa-
tions are available for each object. We developed an exten-
sion of the fuzzy c-Means algorithm with noise detection
that uses membership degrees to model the impact of ob-
jects to the clustering in a particular universe. By incorpo-
rating these membership values into the objective function,
we were able to derive update equations which minimize the
objective with respect to these values, the partition matrices,
and the prototype center vectors. In order to model the con-
cept of noise, i. e. patterns that apparently are not contained
in any of the cluster, we introduced an auxiliary noise uni-
verse that has one single cluster to which all objects have a
fixed, pre-defined distance. Patterns that are not covered by
any of the clusters will get assigned a high membership to
this universe and can therefore be revealed as noise.

The clustering algorithm itself works in an iterative man-
ner using the above update equations to compute a (local)
minimum. The result are clusters located in different par-
allel universes, each modeling only a subset of the overall
data and ignoring data that do not contribute to clustering in
a universe.

We demonstrated that the algorithm performs well on a
synthetic data set and nicely exploits the information of hav-
ing different universes.

Further studies will concentrate on the overlap of clus-
ters. The proposed objective function rewards clusters that
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Figure 3. The top figures show the clusters as they are found when applying the algorithm with
no noise detection [16]. The bottom figures show the clusters found by the algorithm using noise
detection. While the clusters in the top figures contain patterns that do not appear natural for this
clustering, the clustering with noise detection reveals those patterns and builds up clear groupings.

only occur in one universe. Objects that cluster well in more
than one universe could possibly be identified when having
balanced membership values to the universes but very un-
balanced partitioning values for the cluster memberships.

Other studies will focus on the applicability of the pro-
posed method to real world data and heuristics that adjust
the number of clusters per universe.
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Appendix

In order to compute a minimum of the objective func-
tion (3) with respect to (4) and (5), we exploit a Lagrange
technique to merge the constrained part of the optimization
problem with the unconstrained one. Note we skip the extra
notation of the noise universe in (3) as one can think of an
additional universe, i. e. the number of universe is U + 1,
that has one cluster to which all patterns have a fixed dis-
tance of δ2. The derivation can then be applied as follows.

It leads to a new objective function Fi that we minimize
for each pattern ~xi individually,

Fi =
U∑

u=1

zn
i,u

cu∑
k=1

vm
i,k,udu (~wk,u, ~xi,u)2 (9)

+
U∑

u=1

µu

(
1−

cu∑
k=1

vi,k,u

)
+ λ

(
1−

U∑
u=1

zi,u

)
.

The parameters λ and µu, 1 ≤ u ≤ U , denote the Lagrange
multiplier to take (4) and (5) into account. The necessary
conditions leading to local minima of Fi read as

∂Fi

∂zi,u
= 0,

∂Fi

∂vi,k,u
= 0,

∂Fi

∂λ
= 0,

∂Fi

∂µu
= 0 , (10)

1 ≤ u ≤ U, 1 ≤ k ≤ cu.

In the following we will derive update equations for the z
and v parameters. Evaluating the first derivative of the equa-
tions in (10) yields the expression

∂Fi

∂zi,u
= n zn−1

i,u

cu∑
k=1

vm
i,k,udu (~wk,u, ~xi,u)2 − λ = 0,

and hence

zi,u =
(

λ

n

) 1
n−1

(
1∑cu

k=1 vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

.

(11)



We can rewrite the above equation

(
λ

n

) 1
n−1

= zi,u

(
cu∑

k=1

vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

. (12)

From the derivative of Fi w. r. t. λ in (10), it follows

∂Fi

∂λ
= 1−

U∑
u=1

zi,u = 0

U∑
u=1

zi,u = 1 , (13)

which returns the normalization condition as in (5). Using
the formula for zi,u in (11) and integrating it into expres-
sion (13) we compute

U∑
u=1

(
λ

n

) 1
n−1

(
1∑cu

k=1 vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

= 1

(
λ

n

) 1
n−1 U∑

u=1

(
1∑cu

k=1 vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

= 1.(14)

We make use of (12) and substitute
(

λ
n

) 1
n−1 in (14). Note,

we use ū as parameter index of the sum to address the fact
that it covers all universes, whereas u denotes the current
universe of interest. It follows

1 = zi,u

(
cu∑

k=1

vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

×
U∑

ū=1

(
1∑cū

k=1 vm
i,k,ūdū (~wk,ū, ~xi,ū)2

) 1
n−1

,

which can be simplified to

1 = zi,u

U∑
ū=1

(∑cu

k=1 vm
i,k,udu (~wk,u, ~xi,u)2∑cū

k=1 vm
i,k,ūdū (~wk,ū, ~xi,ū)2

) 1
n−1

,

and returns an immediate update expression for the mem-
bership zi,u of pattern i to universe u (see also (7)):

zi,u =
1

U∑̄
u=1

(∑cu

k=1
vm

i,k,u
du(~wk,u,~xi,u)2∑cū

k=1
vm

i,k,ū
dū(~wk,ū,~xi,ū)2

) 1
n−1

.

Analogous to the calculations above we can derive the
update equation for value vi,k,uwhich represents the par-
titioning value of pattern i to cluster k in universe u.
From (10) it follows

∂Fi

∂vi,k,u
= zn

i,u m vm−1
i,k,u du (~wk,u, ~xi,u)2 − µu = 0,

and thus

vi,k,u =

(
µu

m zn
i,u du (~wk,u, ~xi,u)2

) 1
m−1

,(15)

(
µu

m zn
i,u

) 1
m−1

= vi,k,u

(
du (~wk,u, ~xi,u)2

) 1
m−1

.(16)

Zeroing the derivative of Fi w. r. t. µu will result in condi-
tion (4), ensuring that the partition values sum to 1, i. e.

∂Fi

∂µu
= 1−

cu∑
k=1

vi,k,u = 0 . (17)

We use (15) and (17) to come up with

1 =
cu∑

k=1

(
µu

m zn
i,u du (~wk,u, ~xi,u)2

) 1
m−1

,

1 =

(
µu

m zn
i,u

) 1
m−1 cu∑

k=1

(
1

du (~wk,u, ~xi,u)2

) 1
m−1

.(18)

Equation (16) allows us to replace the first multiplier
in (18). We will use the k̄ notation to point out that the
sum in (18) considers all partitions in a universe and k to
denote one particular cluster coming from (15),

1 = vi,k,u

(
du (~wk,u, ~xi,u)2

) 1
m−1

×
cu∑

k̄=1

(
1

du

(
~wk̄,u, ~xi,u

)2
) 1

m−1

1 = vi,k,u

cu∑
k̄=1

(
du (~wk,u, ~xi,u)2

du

(
~wk̄,u, ~xi,u

)2
) 1

m−1

Finally, the update rule for vi,k,u arises as (see also 6):

vi,k,u =
1

cu∑̄
k=1

(
du(~wk,u,~xi,u)2

du(~wk̄,u,~xi,u)2

) 1
m−1

.

For the sake of completeness we also derive the update
rules for the cluster prototypes ~wk,u. We confine ourselves
to the Euclidean distance here, assuming the data is normal-
ized2:

du (~wk,u, ~xi,u)2 =
Au∑
a=1

(wk,u,a − xi,u,a)2 , (19)

2The derivation of the updates using other than the Euclidean distance
works in a similar manner.



with Au the number of dimensions in universe u and wk,u,a

the value of the prototype in dimension a. xi,u,a is the value
of the a-th attribute of pattern i in universe u, respectively.
The necessary condition for a minimum of the objective
function (3) is of the form ∇~wk,u

J = 0. Using the Eu-
clidean distance as given in (19) we obtain

∂Jm,n

∂wk,u,a
= 0 = 2

|T |∑
i=1

zn
i,u vm

i,k,u (wk,u,a − xi,u,a)

wk,u,a

|T |∑
i=1

zn
i,u vm

i,k,u =
|T |∑
i=1

zn
i,u vm

i,k,u xi,u,a

wk,u,a =

∑|T |
i=1 zn

i,u vm
i,k,u xi,u,a∑|T |

i=1 zn
i,u vm

i,k,u

,

which is also given with (8).
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