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Abstract. Many intermediate program representations are used by
compilers and other software development tools. In this paper, we pro-
pose a novel representation technique that, unlike those commonly used
by compilers, has been explicitly designed for facilitating program ele-
ment matching, a task at the heart of many software mining problems.

1 Introduction

Program element matching is a common problem that must be addressed in
many software mining applications. It is required for maintaining several ver-
sions of the same program (a.k.a. multi-version program analysis [1]), merging,
regression testing automation, understanding the evolution of software code and
the nature of software changes [2], detecting duplicated code (or near duplicates)
for refactoring (or even bug fixing), and also for concept analysis [3], reverse en-
gineering, and re-engineering.

Quite often, matching is approximated by comparing the textual similarity of
program elements, at their source code level [4] [5]. As an alternative approach,
some techniques match elements at their syntactic level [6] [7] [8] [9] [10] [11]. This
enables them to detect some simple transformations that might go unnoticed at
the source code level.

Even though no automatic tool can be perfectly accurate in determining the
semantic equivalence of two programs (because of the inherent undecidability
of the semantic program equivalence problem), this paper introduces a novel
hierarchical program representation that can be useful for matching program
elements in situations where existing techniques fall short.

2 Beyond Syntax Trees

A program textual description (i.e. its source code), or its equivalent syntactic
representations (e.g. syntax trees and control flow graphs), describes the pro-
cesses that the program has been designed to perform, at least in imperative
programming languages. Substituting a state description for a process descrip-
tion, however, can help simplify its description, provided that we find the right
representation for the program structure.
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The program dependence graph (PDG) [12], for instance, is an intermediate
program representation that makes explicit both data and control dependences.
Control dependences are derived from the control flow graph and represent the
essential control flow relationships in a program. Data dependences (hazards in
the hardware jargon) refer to situations where instructions use data involved in
the execution of preceding instructions. True data dependences, also known as
RAW (read-after-write) hazards, refer to situations where a statement needs, as
an operand, the result computed by a preceding statement. Dependence analysis,
thus, is used to discover execution-order constraints in a software program. These
constraints help determine if it is safe or not to reorder or parallelize statements,
hence their importance in optimizing compilers [13] [14].

Program dependence graphs have also been used for program element match-
ing. Unfortunately, the proposed algorithms are not directly applicable to cur-
rent programming languages: they work only on limited languages without global
variables, pointers, arrays, or procedures [1]; or they are just too inefficient to
be of practical use.

– Horwitz [15] determines which program elements have changed by comparing
two versions of a program. She builds a program representation graph (PRG)
that combines features of program dependence graphs (PDG) and static sin-
gle assignment forms (SSA). Then, program elements are partitioned into
sets of equivalent behavior using an efficient graph partitioning algorithm.
The proposed technique is able to flag semantic changes that might go un-
noticed if we used a text-based program comparator (e.g. direct or indirect
uses of changed variable values), but only in a limited language with scalar
variables, assignment statements, structured control statements, and output
statements.

– Krinke’s approach [16] identifies similar code in programs by finding maximal
isomorphic subgraphs in program dependence graphs. His algorithm detects
subgraphs with identical k-length paths in attributed directed graphs. Un-
fortunately, high amounts of duplicated code cause exploding running times
since testing graph isomorphism is NP-complete. Moreover, large duplicated
code sections cause many overlapping duplicates to be reported. This is a
common problem with many existing techniques that have grown out of
work on compiler optimization, which requires semantic-preserving transfor-
mations (i.e. they always err on the side of flagging spurious differences and
never miss a real difference).

– Jackson and Ladd’s semantic diff [17] takes two versions of a procedure and
generates a report summarizing the differences between them in terms of
the observable input-output behavior of the procedure. Unlike the afore-
mentioned approach, this tool does not check for dependence graph isomor-
phism. It also sacrifices soundness in the presence of aliasing and pointers.
Common semantic-preserving transformations will be correctly interpreted
as such (e.g. local variable renaming, using temporary variables for common
subexpressions...), but some real differences will be missed (e.g. off-by-one
errors). Surprisingly, the lack of alias analysis in this tool turned out not
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to be a serious problem in the reported experiments since “aliases occur
relatively infrequently” (sic) in practice.

– Dex (Difference Extractor) [2] does not use PDGs but abstract semantic
graphs (ASGs) in order to compare different versions of a C program. ASGs
are no more than standard abstract syntax trees with additional edges indi-
cating type information. As a matter of fact, Dex works on ordered, rooted
trees it extracts from the ASGs. Since Dex matches trees, and not graphs,
it has a polynomial worst-case time complexity (it avoids working on arbi-
trary graphs, which would lead to NP complexity). Dex has been used for
the analysis of bug fixes, but it should be extended to detect changes that
involve dependences between non-contiguous program elements.

By taking dependences into account, three of the aforementioned techniques
consider not only the syntactic structure of programs, but also the data flow
within them. This makes them robust with respect to the relative ordering of
the independent statements in a program, a feature they share with the novel
program representation we now introduce.

3 Program Dependence Higraphs

In Nature, complexity frequently takes the form of hierarchic systems – the
complex system being composed of subsystems that in turn have their own
subsystems –, maybe because hierarchic systems can evolve far more quickly
than non-hierarchic systems of comparable size [18]. Hierarchies also appear in
human problem solving and, as we are all familiar with, in Software Engineering
(a domain with no obvious connections with natural evolution).

In the form of trees, hierarchies provide relatively simple descriptions for com-
plex systems when they are decomposable (or near decomposable). The novel
representation model we propose, the program dependence higraph or PDH for
short, lends itself to the hierarchical interpretation of any software system.

Figure 1 includes a simple code snippet whose dependence higraph is also
shown. We will use this example to illustrate the construction of dependence
higraphs. But before we formally present them, we must introduce some prelim-
inary definitions.

3.1 Reduced Blocks

As in any dependence-based representation model, we first perform some pre-
liminary control-flow analysis. However, instead of partitioning the intermediate
code into basic blocks (i.e. maximal sequences of consecutive instructions), as
any self-respecting compiler back end would do, we use reduced blocks, which are
defined as follows:

A reduced block is a minimal, stand-alone, consecutive sequence of instruc-
tions whose execution (a) has an observable effect in the program state, or (b)
may affect the program control flow.
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public int TestNestedFor (int n) {

  int sum = 0;

  for (int i=0; i<n; i++)

     for (int j=0; j<n; j++)

          sum += i*j;

  return sum;
}
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= 

f(sum,i,j)

Fig. 1. Simple code snippet (left) and its corresponding dependence higraph (right)

The first case corresponds to sequences of instructions used to evaluate expres-
sions whose results are stored into program variables (including local variables
and globally accessible data). This case also applies to procedure calls with vis-
ible side effects.

The second case matches those code fragments that appear at the end of basic
blocks and determine control flow. Therefore, every basic block will contain, at
least, one reduced block (but may contain many of them).

If we view a basic block as a directed acyclic graph (DAG), where common
subexpressions are shared among different expressions, then a reduced block is
obtained from each tree derived from the DAG representation of the basic block
(i.e. we explicitly introduce redundant expressions). This unusual transforma-
tion, from the compiler point of view, is intended to convert reduced blocks into
small independent black boxes. In some sense, this is similar to the input-output
dependence tracking found in semantic diff [17]).

In the example shown in Figure 1, we can identify nine reduced blocks. The
numbers annotating the source code in Figure 1 mark these blocks. A control
flow graph can then be derived from the set of reduced blocks. Figure 2(left)
represents the control flow graph derived from our code snippet. It should be
noted that, for instance, reduced blocks 4 and 5 would have been merged into a
single node if we had used basic blocks instead of reduced blocks for our control-
flow analysis.

3.2 The Dominance DAG

Once we have analyzed the program control flow, we must perform some data-
flow analysis before we can construct the dependence higraph.

For each reduced block Bi, we define def(Bi) as the set of variables whose
values might be modified by the execution of Bi (this includes any variable
within the current program element scope: local variables, globally-accessible
data, procedure parameters, and function return values). Similarly, we define
use(Bi) as the set of variables whose values might be used during the execution
of Bi.
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Fig. 2. The control flow graph (left) and the resulting dominance DAG (right) derived
from the code snippet in Figure 1

We say that there is a def-use chain from Bi to Bj if a variable v defined by
Bi is used by Bj (i.e. def(Bi) ∩ use(Bj) �= ∅) and there exists a path from Bi

to Bj in the control flow graph where the value of v is not changed by any node
in the path preceding Bj .

Now, we can define a strong dominance relationship as follows: A block
Bi strongly dominates a block Bj if, and only if, there is at least one def-use
chain from Bi to Bj and every path in the control flow graph from the entry
node to Bj includes Bi

The dominance relationship computation can be expressed as a data-flow
problem and solved using standard data-flow analysis techniques [19]. As an
antisymmetric relationship defined among the reduced blocks in a program, it
defines a directed acyclic graph that will serve as the basis for the construction
of the program dependence higraph.

Figure 2(right) shows the dominance DAG corresponding to the code snippet
in Figure 1. It should be noted that, unlike dominator trees [19], which are
exclusively defined in terms of the control flow graph, dominance DAGs also
incorporate data-flow information. This important difference explains why the
strong dominance relationship yields directed acyclic graphs and not just trees.

3.3 Dependence Higraph Definition

Higraphs, as a general kind of diagram, are useful for displaying topological
structures [20]. They have applications in databases, knowledge representation,
and the behavioral specification of complex concurrent systems (e.g. Harel’s
statecharts and their descendants, including UML state machine diagrams).

A higraph is a graph whose nodes may contain higraphs within them. Given
a higraph node n, the children of n are the nodes in the graph directly within n.

In order to define the program dependence higraph, we extend the strong dom-
inance relationship we defined in the previous section in terms of blocks. Given
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two children of a node in the higraph, ni and nj , we will say that ni strongly
dominates nj if two reduced blocks Bi and Bj exist so that Bi is contained
within ni, Bj is contained within nj, and Bi strongly dominates Bj .

A program dependence higraph (PDH), if we ignore the control and data
dependences among the reduced blocks in the program, can then be defined as
a tree with two kinds of nodes: P-nodes and S-nodes.

– P-nodes have children that are not related by the strong dominance re-
lationship. In a very limited sense, the nodes within a P-node might be
parallelized.

– On the other hand, S-nodes’ children are sequentially connected by the
strong dominance relationship. In other words, if an S-node contains children
n1, n2... nk, then ni strongly dominates ni+1 for all the S-node children but
nk (i.e. the last node in the S-node does not dominate any other node in the
S-node).

With the program dependence higraph defined as above, the reduced blocks
in the program control flow graph will be, therefore, the leaves in the tree defined
by the S-node and P-node containment hierarchy.

Figure 1 included the program dependence higraph corresponding to the code
snippet shown at its left. The sample program is represented by an S-node whose
second child, which corresponds to the sum value computation, strongly depends
on its first child. This, in turn, is a P-node containing three independent higraphs,
which roughly correspond to the sum value initialization and the counters that
control the execution of the two nested (but independent) loops.

In the next section, we will show how we can obtain such an intuitive higraph
from the program dependence DAG in Figure 2.

3.4 Dependence Higraph Construction

Program higraph construction can be performed by an iterative bottom-up algo-
rithm that traverses the edges in the program dependence DAG. The program
higraph construction algorithm proceeds by merging nodes until there is only
one node left, which will be the root of the resulting higraph.

The traversal of the dependence DAG is done backwards in order to lump
together nodes that share the same set of predecessors in the DAG:

– We create S-nodes containing sequences of nodes (n1, n2... nk) whenever ni

is the only predecessor of ni+1 in the current program dependence DAG and
either (a) ni has no other successors in the current dependence DAG, or (b)
ni+1 has no successors and does not share its set of predecessors with any
other node in the DAG. From an intuitive point of view, S-nodes cluster
sequences that are tightly related by the strong dominance relationship.

– Next, we use a greedy algorithm to discover P-nodes containing sets of nodes
{n1, n2...nk} that share their sets of predecessors and successors in the cur-
rent program dependence DAG. Each of this sets will lead to a new P-node
in the program dependence higraph.
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Fig. 3. Dependence higraph construction (from left to right): (a) initial S-node and
P-nodes; (b) identification of S-nodes; (c) P-node identification

Once we create an S-node or a P-node, we replace the enclosed nodes in
the dependence DAG by the newly-created node (and its corresponding strong
dependences). The process is repeated until the dependence DAG is reduced to
a single node, which will become the root of the program dependence higraph.
Obviously, this root might be either an S-node or a P-node, depending on the
particular situation.

This polynomial-time iterative algorithm eventually terminates because, start-
ing from the finite dependence DAG derived from an imperative program, each
algorithm iteration reduces the number of nodes in the DAG.

It is important to note that the two steps above must be performed in the
specified order (S-nodes before P-nodes) in order to facilitate the semantic in-
terpretation of the resulting higraph.

Let us now return to the code snippet from Figure 1, whose dependence DAG
was shown in Figure 2.

In the first iteration of the PDH construction algorithm, we detect that blocks
4 and 9 can be lumped together into an S-node. Once these blocks are merged
into the S-node 49, we also detect that we can create two new P-nodes, merging
blocks 7 and 8 on the left side, and blocks 5 and 6 on the right side. We can do
this because each pair of blocks share the same set of predecessors in the DAG
(i.e. block 2 for the P-node 78, block 3 for the P-node 56). The resulting DAG
is shown in Figure 3(a).

Now, the newly-created P-blocks 78 and 56 have only one predecessor, have
no successors, and they do not share their sets of predecessors with any other
nodes in the current higraph. Therefore, two new S-nodes are created as shown
in Figure 3(b).

Next, by a backwards traversal of the current DAG, we find that nodes 278,
1, and 356 share their predecessors (the empty set, since none of them has any
predecessor) and they also share their only successor. Hence, we lump them into
a new P-node and our original DAG has been reduced to a simple two node
higraph, as shown in Figure 3(c).
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Therefore, our program dependence higraph consists of an S-node with two
children: an initial P-node and a nested S-node following the initial P-node. The
resulting higraph matches the one we introduced in Figure 1 and the reader can
now check the semantic interpretation we provided when we introduced the idea
of dependence higraphs in the previous section.

4 Dependence Higraph Matching Abilities

The main limitation of text- and syntax-based matching algorithms is that rel-
atively simple modifications can hinder the detection of code duplication. A
matching tool based on dependences is not so easily confused. We can analyze
the potential matching abilities each approach provides by studying some com-
mon change scenarios:

– Verbatim copying (as in copy & paste programming), for which any tech-
nique should properly work.

– Text insertion/deletion (adding or removing source code comments,
changing I/O messages, and other minor formatting modifications) might
reveal some limitations of naive string matching algorithms, although every
clone detector should still handle this kind of changes.

– Renaming (changing the names of program elements: variables; functions,
procedures, or methods; classes, modules, or packages): A clone detector
provided with a string tokenizer can handle such changes.

– Altering assignments and expressions (adding, removing, or changing
variables and expressions in assignment statements): Most clone detectors
would also detect this change scenario.

– Control flow modifications (changing the circumstances the code will
be executed under; e.g. insertion of new conditional statements or changing
existing conditions in conditional expressions): A cleverly-devised text-based
matching algorithm would detect them, although some syntax-based clone
detectors can be misled.

– Replacement (changing expressions and control statements for equivalent
ones, e.g. for → while): Most text-based and some syntax-based matching
algorithms will fail. Dependence-based algorithm will properly work.

– Reordering (changing the order of independent statements while preserv-
ing the program semantics, e.g. exchanging for loops in the example from
Figure 1): In this situation, only dependence-based techniques are reliable.

– Splitting (splitting a procedure or module into several ones, as in the
‘method extraction’ refactoring) and Merging (merging procedure bod-
ies, as in procedure inlining): Only dependence higraphs can be truly use-
ful here, since they can benefit from existing embedded tree mining
algorithms [21].

As Table 1 shows, syntax-based techniques generally improve token-based
matching, even though they might fail to properly match code blocks within new
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Table 1. The potential matching abilities of alternative program representation tech-
niques (� excellent, � partial, � poor)

String Lexical Syntactic Dependence Dependence
matching analysis analysis graphs higraphs

Verbatim copying � � � � �
Text insertion/deletion � � � � �
Renaming � � � � �
Assignment modifications � � � � �
Control flow alteration � � � � �
Replacement � � � � �
Reordering � � � � �
Splitting � � � � �
Merging � � � � �

conditional statements. Dependence-based techniques are robust with respect to
this kind of modifications and they are also better at the detection of equivalent
control structures. Finally, they are not easily confounded by semantic-preserving
statement reordering.

5 Conclusions and Future Work

Text matching tools are usually line-based, so even lexical changes with no syn-
tactic effects might spuriously appear as modifications. Syntactic matching tools
are able to properly detect some code transformations, but they are only able
to show the syntactic scope of the detected change. This could be a severe
drawback if we are interested in understanding the effects of a given change
(as maintainers must do not to introduce new bugs when modifying an existing
code base).

Semantic matching techniques, and the use of dependence graphs in par-
ticular, eliminate this limitation, since the repercussions of a change can be
determined by following dependence edges in the dependence graph. Unfor-
tunately, traditional semantic-based techniques are computationally expensive
(global analysis is often unfeasible in large systems).

Dependence higraphs, however, are amenable to some optimizations due to
their hierarchical structure. S-nodes, due to their sequential structure, can be
matched as ordered, rooted trees to find perfect matches (dynamic programming
can be used for approximate matches). Unordered P-nodes matching can be sped
up with the help of heuristics.

Another interesting (and differentiating) feature of dependence higraphs is
that, due to their hierarchical nature, they are well suited for detecting some
change scenarios beyond the scope of previous techniques (procedure splitting
and merging, for instance). This fact opens up new possibilities in the study of
refactorings, aspect mining, and software modularization in general.
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