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Abstract. In some classification problems, apart from a good model,
we might be interested in obtaining succinct explanations for particular
classes. Our goal is to provide simpler classification models for these
classes without a significant accuracy loss. In this paper, we propose some
modifications to the splitting criteria and the pruning heuristics used by
standard top-down decision tree induction algorithms. This modifications
allow us to take each particular class importance into account and lead
us to simpler models for the most important classes while, at the same
time, the overall classifier accuracy is preserved.1

1 Introduction

Traditional classification techniques treat all problem classes equally. This means
that classification models are built without focusing on particular problem classes.
In practice, however, not all problem classes are equally important. Obtaining a
simpler model for the important classes, even when it might be slightly less accu-
rate, might be of interest. In this paper, we introduce class-complexity-sensitive
classification techniques, CCS classifiers for short, to address this issue.

The aim of CCS algorithms is to build classification models that, being as
simple as possible for the most important classes, preserve the global classifi-
cation accuracy their traditional counterparts provide. It should be noted that,
given their goal, CCS algorithms will not treat all class values equally during
the classifier construction process.

CCS classification models can be useful in the following scenarios:

– Extreme class values, when experts are specially interested in succinctly
describing classes whose importance is premium within the decision making
process (a common situation when classes are ranked).

– Ontologies relating different problem classes, when classes can be or-
ganized somehow (i.e. focusing on a subset of related classes that can be
specially meaningful for the expert).

– Typical binary classification problems, when obtaining a proper de-
scription of one of the classes is more important for the user than having a
typical classification model where both problem classes are equally treated.
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It should also be noted that the class values we are interested in might change
depending on our personal goals, even for the same problem. We incorporate the
relative importance of each problem class into the classification model building
process. We consider relative weights representing each class relative importance.
When all the problem classes are equally important, we assign a relative weight
of 1 to each one of them. When a class is 50%, 100%, 150%, 200%, 400%, and
800% more important than other, its relative weight should be 1.5, 2, 2.5, 3,
5, and 9 times the weight of the less important class. Afterwards, the resulting
values can always be normalized to fall within the [0,1] interval while preserving
the relative values they define in their ratio scale. The relative importance for
the class values must be set empirically, according to each problem.

The rest of our paper is organized as follows. Section 2 describes existing work
where special class features are taken into account. Section 3 briefly describes
standard decision trees and how to modify them in order to build CCS classifi-
cation models. Section 4 proposes how to evaluate the resultant models from a
CCS perspective. Experimental results are provided in Section 5. Finally, Section
6 includes some conclusions.

2 Related Work

All classes should not be equally treated in all classification problems. Class
differences make traditional classification models ineffective when class features
are ignored. Some techniques have been proposed to deal with particular class
features:

– Imbalanced learning methods [1] do not ignore the less frequent classes
when there are very frequent classes that would lead traditional methods
astray. Unlike CCS models, which are focused on classifier complexity, im-
balanced learning methods are focused on the resulting classifier accuracy.

– Cost-sensitive classification [4] techniques take into account that the cost
of misclassification is not the same for all the problem classes. Unlike CCS
models, these learners are mainly focused on classifier accuracy (to avoid
high-cost classification mistakes).

– Subgroup discovery [5] tries to find interesting subgroups within the train-
ing data set with respect to a target class value from a statistical point of
view. They only provide a model for the target class, whereas CCS learners
build complete classification models.

3 CCS Decision Trees

Decision trees [8] are one of the most widely used classification models. The
availability of efficient and scalable decision tree learners [9,6] makes them useful
for data mining tasks. Moreover, their interpretability makes them specially
suitable for CCS classification.
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We have modified the standard top-down induction of decision trees algorithm
(TDIDT) to address CCS classification by modifying both its heuristic splitting
criterion and the tree pruning strategy.

3.1 Splitting Criteria

A heuristic splitting criterion is used to decide how to branch the tree [2]. Quin-
lan’s Gain Ratio criterion [8], for instance, chooses the attribute maximizing the
information gain ratio with respect to the class attribute:

GainRatio(A) =
H(C) − ∑JA

j=1 p(aj) · H(C|aj)

−∑JA

j=1 p(aj)log2(p(aj))

where H(C) is the entropy of the class, JA corresponds to the number of different
values for the A attribute, and p(aj) is the relative frequency of value aj . H(C|aj)
represents the class entropy for the aj value of the A attribute:

H(C|aj) = −
K∑

k=1

p(ck|aj) · log2(p(ck|aj))

where K is the number of classes and p(ck|aj) is the relative frequency of the
k-th value of the class given the j-th value of the attribute A.

Standard splitting criteria measure how good an attribute is for separating
the examples belonging to different classes, but they do not take the relative
importance of each class into account. In a CCS classification context, however,
we should bias the heuristic criteria towards nodes with a better representation
of examples belonging to the most important classes.

Criteria based on class entropy average the contribution of each class. We
could include CCS information in this averaging process. The resulting criterion
family, or CCS evaluation criteria, Ef , consider the relative importance of each
class and can be formalized as follows:

Ef (C|aj) =
K∑

k=1

f(wk) · E(ck|aj)

where f(wk) is the function used to aggregate the contributions from each class
according to its relative importance, which is uniquely determined by its weight.

E(ck|aj) is the function we use to compute how good the j-th value of the
attribute A is in determining the k-th value of the class. Here, we can resort to
the value given by the standard entropy-based splitting criteria, that is

E(ck|aj) = −p(ck|aj) · log2(p(ck|aj))

Please note that, when f(wk) = 1, Ef ≡ H . We propose two alternative
splitting criteria using two different aggregation functions:
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Simple CCS Evaluation (EI). We could directly resort to the class weights
to aggregate the contributions from each class, i.e., using the identity function,
f(wk) ≡ I(wk) = wk. The resulting criterion is then:

EI(C|aj) =
K∑

k=1

wk · E(ck|aj)

Weighted Premium CCS Evaluation (EWP). In some cases, the previous
criterion could lead to classifiers that would tend to ignore the least important
classes as we increase the relative importance of some classes. In some sense,
this is similar to the problem imbalanced learning methods try to address and
it should be avoided. Hence we propose a different criterion that uses a softened
aggregation function: Weighted Premium (WP). For a given class weight wk, its
weighted premium is

WP(wk) = 1 +
wk − min weight

max weight
(1)

where min weight corresponds to the weight of the least important class and
max weight represents the most important class weight. Therefore, the weighted
premium is 1 for the least important classes and it is greater than one for more
important classes. It favors the most important classes without ignoring the least
important ones.

The normalized version of weighted premiums can then be used as the f(wk)
aggregation function to define a Weighted Premium Evaluation criterion, EWP:

EWP(C|aj) =
K∑

k=1

[
WP(wk)

∑K
i=1 WP(wi)

]

· E(ck|aj)

For instance, in a 2-class problem where one class is nine times more important
than the other, the relative weights for the two classes would be 9

10 and 1
10 . After

the WP transformation, the resulting values would be softened: 0.65 and 0.35,
respectively.

3.2 Tree Pruning

Tree pruning is necessary in TDIDT algorithms to avoid overfitting. Quinlan’s
pessimistic pruning [8], for instance, performs a postorder traversal of the tree
internal nodes in order to decide, for each subtree, if it should be replaced for
a single leaf node, which would then be labeled with the most common class in
that subtree.

From a CCS classification perspective, a subtree should be pruned if the er-
rors that tree pruning introduces correspond to examples belonging to the less
important classes. In order to perform CCS tree pruning, we define a CCS error
rate that takes class weights into account:

CCSError =
∑K

k=1 wk · ek
∑K

k=1 wk · nk
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where ek is the number of misclassified training examples from the k-th class
and nk is the support of the k-th class in the training set. In other words, a
misclassified example is taken into account according to its relative class weight.
Please note that no smoothing function, such as WP, is needed when defining
the CCSError rate because it is a direct measure of the CCS model quality. For
splitting criteria, however, the smoothing function was needed for the algorithm
not to ignore the least important classes.

We propose two pruning strategies that take CCSError into account:

– The first pruning strategy, CCS Pruning , adapts Quinlan’s pessimistic
error estimate by replacing Error with CCSError. However, there are some
situations in which CCS pruning is not effective enough. Let us imagine a
node whose examples mainly belong to unimportant classes, maybe with
some occasional examples belonging to a very important class. When the
relative importance of the important class is very high, pruning will not be
performed. However, it is clear that pruning might be beneficial in this case,
since complexity would be reduced while accuracy would not be severely
affected. This leads us to a second pruning strategy:

– Double Pruning addresses the aforementioned situation by allowing the
use of the CCSError rate to perform additional pruning, apart from Quin-
lan’s standard pruning. In other words, we will prune a subtree if the pes-
simistic estimation of the CCS error for the subtree is higher than the CCS
error for a single leaf node, even when the standard estimation of the leaf
node error is greater than the standard estimation of the subtree error.

4 CCS Classifier Evaluation

In order to evaluate CCS models, we have used three different metrics corre-
sponding to three different aspects we would like a CCS classifier to address:
simplicity with respect to important classes (that is, the main driver behind
CCS classification), a good overall accuracy (since the resultant model should
still be useful in practice), and a small false positive rate (to check that the
complexity reduction does not come at the cost of too many false positives for
the important classes).

4.1 Classifier Weighted Complexity

AvgCSDepth is defined as the CCS version of the average tree depth typically
used to measure decision tree complexity. The average tree depth, without taking
class weights into account, can be computed as

AvgDepth =
∑K

k=1

∑L
l=1 nkl · l

∑K
k=1 nk

where K is the number of classes, L is the number of tree levels (i.e. its overall
depth), nk is the number of examples belonging to the k-th class, and nkl is the
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number of examples belonging to the k-th class that end up in a leaf at the l-th
tree level.

The average class-sensitive depth, AvgCSDepth, is computed as a weighted
average by taking class weights into account, so that each class importance de-
termines that class contribution to the CCS depth:

AvgCSDepth =
∑K

k=1 wk

∑L
l=1 nkl · l

∑K
k=1 wknk

This way, a decision tree with important class leaves nearer to the root will
have a lower CS depth. When all weights are the same, the classifier CCS depth
measure is equivalent to the standard average tree depth.

4.2 Classifier Accuracy

Even though our goal is to achieve simpler models for the most important classes,
we must still consider the resulting classifier accuracy. The simplest classification
model, from a CCS classification perspective, would be useless if it misclassified
too many examples. Hence, we will also include the overall classifier accuracy in
our experiment results:

Accuracy =
∑K

k=1 TPk

N

where TPk is the number of true positives belonging to the k-th class and N is
the total number of examples.

4.3 F Measure: False Positives and False Negatives

Finally, we also check that the complexity reduction we achieve does not come
at the cost of an inordinate number of false positives. For this, we resort to the
F measure typically used in information retrieval. This measure computes the
harmonic mean of the resulting classifier precision and recall. In particular, we
resort to the macro-averaging F measure [10] that is defined as follows:

MacroF =
2 · PrM · ReM

PrM + ReM

where PrM and ReM represent the macro-averaged precision and recall measures
(i.e. the average of the individual measurements performed for each one of the
problem classes).

5 Experimental Results

We have tested CCS versions of the standard C4.5 TDIDT algorithm [8] with
some well-known classification problems from the UCI Machine Learning Repos-
itory [7]. Table 1 shows the data sets we have used in our experiments.
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Table 1. Data sets used to evaluate CCS decision trees

Dataset Records #Attr. Classes Dataset Records #Attr. Classes
ADULT 48842 15 2 IRIS 150 5 3

AUSTRALIAN 690 15 2 MAGIC 19020 10 2
AUTOS 205 25 6 MUSHROOM 8124 23 2

BALANCE-SCALE 625 4 3 NURSERY 12960 9 5
BREAST 699 9 2 PIMA 768 9 2

CAR 1728 7 4 SPAMBASE 4601 57 2
CHESS 3196 36 2 SPLICE 3175 61 3
CMC 1473 9 3 TICTACTOE 958 10 2

FLAGS 194 29 8 TITANIC 2201 4 2
GLASS 214 9 6 VOTES 435 17 2

HAYESROTH 160 5 3 WAVEFORM 5000 22 3
HEART 270 14 2 WINE 178 14 3
IMAGE 2310 18 7

For each classification problem, we have performed an experiment suite for
each class value. In each suite, a different class is chosen to be the most im-
portant one whereas the others are equally important among them. Each suite,
itself, includes experiments with seven different relative weights. We have tested
the algorithms performance when the higher weight is 1, 1.5, 2, 2.5, 3, 5, and 9
times the lower weight, where 1 corresponds to the non-weighted case, 1.5 corre-
sponds to a 50% premium, and so on. Since each particular weight assignment is
evaluated using a 10-folded cross validation, that leads to 10 · 7 ·K experiments
for each algorithm tested on a particular data set, where K is the number of
different classes in the data set. Average results for each problem will be used in
order to draw conclusions.

In addition, further statistical analysis [3] have been performed in order to
ensure the validity of the conclusions drawn from our experiments. In our re-
sults, the number of wins-ties-losses and the average value each measure will be
deemed as significant according to the Sign Test [11] and Wilcoxon’s test [12],
respectively.

Figures 1-3 compare the results we have obtained with CCS decision trees
with the results standard decision trees would achieve. The charts show the
changes that the use of CCS heuristics cause for the three metrics described in
the previous section: average class-sensitive tree depth (AvgCSDepth), classifier
accuracy (Accuracy), and macro-averaged F measure (MacroF). In these charts,
the results for different class weights are shown along the X axis, while the
Y axis corresponds to the percentage variation CCS techniques introduce for
each metric. The X axis corresponds to the results we would achieve by using
a traditional decision tree classifier, which are the results we will always obtain
with equal class weights (w = 1).

Splitting criteria. Figure 1 shows the results we obtain when we use the EI

and EWP splitting criteria instead of the C4.5 gain ratio criterion, always using
the standard C4.5 pessimistic pruning strategy [8].

Regarding EI , no effective CCS depth reduction is observed. Moreover, neither
Accuracy nor MacroF are reduced. In fact, only the MacroF result for w = 9 is
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Fig. 1. Results obtained using CCS splitting criteria

significant according to Wilcoxon’s test. The remaining differences are never
significant according to this statistical test.

With respect to EWP, the average CCS depth is progressively reduced when
w is increased, while both Accuracy and MacroF are hardly reduced. However,
the differences are never significant according to Wilcoxon’s test.
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Fig. 2. Results obtained using CCS pruning techniques

Pruning techniques. Figure 2 depicts the summarized results we have ob-
tained when using CCS pruning and double pruning. Both pruning techniques
lead to much simpler models from a CCS classification point of view, with rela-
tively small accuracy and precision losses.

Double pruning has proved to be more effective than simple CCS pruning,
since greater reductions are achieved even for smaller relative weights. The aver-
age CCS depth obtained by using double pruning is obviously never worse than
what we would achieve using the standard pessimistic pruning and the differ-
ences are always statistically significant, even though they are less pronounced
for accuracy and MacroF than for tree depth.
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Fig. 3. Results obtained when combining WP Criterium and CCS pruning techniques

Combined methods. Figure 3 summarizes the results we have obtained by
combining WP criterium and CSS pruning techniques (similar results are ob-
tained by considering EI instead of EWP). In all cases, CCS depth is significantly
reduced (according to Wilcoxon’s test) with minor reductions on classifier ac-
curacy and precision. Both splitting criteria (EI and EWP) always achieve, in
combination with CCS pruning, simpler models than the standard splitting cri-
terion, but CCS pruning is the main driver behind the observed differences.

If we consider the number of times that the average CCS tree depth is re-
duced, we consistently obtain significant improvements according to the Sign
Test [11]. Out of the 81 experiments we performed, simple CCS pruning reduces
the classifier complexity in 51 to 72 situations depending on the relative weights
we use (the higher w, the higher the number of wins). Double pruning achieves
even better results: from 71 to 76 wins out of 81 tests (consistently reducing
classifier complexity even for small values of w).

6 Conclusions

Classification model complexity is very important since it is closely related to
its interpretability. In many real-life problems, some class values are, somehow,
more important than others. In such situations, experts might be interested
in building succinct models for the mnost important classes. Class-complexity-
sensitive (CCS) classification techniques are designed to address this issue and
they build simpler models for the most important classes without incurring into
high accuracy losses.

In this paper, we have introduced several heuristics that let us adapt standard
decision tree learning algorithm in order to take class importance into account.
Both splitting criteria and pruning strategies have been devised to deal with
CCS classification, thus providing the mechanisms needed to build CCS decision
trees using the standard TDIDT algorithm.

Our experimental results show that CCS splitting criteria do not provide
significant improvements with respect to their traditional counterparts, a result
that is consistent with prior research on splitting criteria [2].
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However, CCS pruning techniques help us achieve considerable reductions
in CCS model complexity within a reasonable accuracy loss. Depth and accu-
racy/precision are traded off, as expected, when weights are introduced into
the standard TDIDT model. Combining both CCS splitting criteria and CCS
pruning techniques leads us to even smaller CCS classification models.
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