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Abstract. The use of non-linear data structures is becoming more and more common in many data mining scenarios. Trees, in
particular, have drawn the attention of researchers as the simplest of non-linear data structures. Many tree mining algorithms
have been proposed in the literature and this paper surveys some of the recent work that has been performed in this area.
We examine some of the most relevant tree mining algorithms and compare them in order to highlight their similarities and
differences.
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1. Introduction

Many data mining problems are best represented with the help of non-linear data structures. Graphs,

for instance, are commonly used to represent data and their relationships in different problem domains,

ranging from web mining [18] and XML document mining [2,20,39] to bioinformatics [5] and social

networks [17].

The use of non-linear data structures in many interesting problems has spurred the interest of data

mining researchers in the development of efficient and scalable data mining techniques for these special

data structures. Trees, in particular, have recently attracted the attention of the research community, in

part because they are particularly amenable to efficient pattern mining techniques.

Identifying frequent patterns in a database of trees is an important task in solving many tree mining

problems. These frequent patterns, also known as frequent subtrees, represent common substructures in

a tree database.

The aim of this paper is to survey the state of the art in tree pattern mining. Chi et al.’s survey [8]

analyzes a few tree pattern mining algorithms in terms of their efficiency. Our survey provides a more

comprehensive overview of the different tree pattern mining algorithms that have been proposed in the

literature. We try to highlight the commonalities among different frequent tree pattern mining algorithms

and reveal the peculiarities of each one.

Our paper is organized as follows. We introduce some standard terminology and notation in Section 2.

Tree mining techniques are analyzed in Section 3. A survey of tree mining algorithms according to the

kinds of input trees they can be applied to and the kinds of subtrees they are able to identify within their

input trees can be found in Section 4. Finally, Section 5 summarizes and concludes our survey paper.
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Fig. 1. Example dataset with different kinds of rooted trees (from left to right): (a) completely-ordered tree, (b) and (c)
partially-ordered trees, (d) completely-unordered tree.

2. Terminology and notation

We will first review some basic concepts and provide some definitions related to labeled trees, their
representation, and the kinds of tree patterns we might be interested in.

2.1. Trees

A labeled tree is a connected acyclic graph that consists of a vertex set V , an edge set E ⊆ V × V ,
an alphabetΣ for vertex and edge labels, and a labeling function L : V ∪E → Σ∪ ε, where ε stands for
the empty label. Optionally, a tree can also have a predefined root, v0, and a binary ordering relationship
6 defined over its nodes (i.e. ‘6’ ⊆ V × V ). The size of a tree is defined as the number of nodes it
contains.
A tree is rooted if its edges are directed and a special node v0, the root, can be identified. The root is

the node from which it is possible to reach all the other vertices in the tree. In contrast, a tree is free if
its edges have no direction, that is, when the tree is undirected. Therefore, a free tree has no predefined
root. Rooted trees can be further classified into:

– Ordered trees, when there is a predefined order 6 within every set of siblings in the trees.
– Unordered trees, when there is not such a predefined order among siblings.
– Partially-ordered trees, which are trees that have both ordered and unordered sets of siblings. This
can be useful when the order within some sets of siblings is important but it is not necessary to
establish an order relationship for all sets of siblings.

Figure 1 shows some rooted trees, from a completely-ordered tree (left) to a completely-unordered
tree (right). In this figure, sibling nodes are joined by an arc when there is an order relationship defined
between them. When such an arc is not present, siblings do not present a predefined order.

2.2. Tree representation

A canonical tree representation is an unique way of representing a labeled tree. This canonical
representation makes the problems of tree comparison and subtree enumeration easier. We now proceed
to describe the most common canonical tree representation schemes.
Three alternatives have been proposed in the literature [8] to represent trees as strings:

– Depth-first codification: The string representing the tree is built by adding the label of each tree
node in a depth-first order. A special symbol ↑, which is not in the label alphabet, is used when the
sequence comes back from a child to its parent.

– Breadth-first codification: Using this codification scheme, the string is obtained by traversing the
tree in a breadth-first order, i.e., level by level. Again, we need an additional symbol $, which is not
in the label alphabet, in order to separate sibling families.
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Fig. 2. Three alternative representations of the same unordered tree.

– Depth-sequence-based codification: This codification scheme is also based on a depth-first traversal

of the tree, but it explicitly stores the depth of each node within the tree. The resulting string, known

as depth sequence, is built with (d, l) pairs where the first element, d, is the depth of the node in the
tree and the second one, l, is the node label.

2.2.1. Ordered tree representation

The three schemes explained above can be directly applied to the representation of rooted ordered

trees. Since all sets of siblings in such trees are ordered, there is a single string that represent each

ordered tree. This unique string is usually referred to as the canonical representation of the tree.

The depth-first codification of the (a) tree in Fig. 1 is ACB↑A↑↑B↑, the breadth-first codification for

that tree is A$CB$BA, and its depth-sequence-based codification is (0,A) (1,C) (2,B) (2,A) (1,B).

2.2.2. Unordered tree representation

The representation of an unordered rooted tree might change depending on how we order its sets of

sibling nodes, as shown in the example in Fig. 2. If we used a depth-first codification scheme, we would

have to choose among the following strings:

– ABA↑C↑B↑↑C↑CB↑A↑↑.

– ABA↑C↑B↑↑C↑CA↑B↑↑.

– ABA↑C↑B↑↑CA↑B↑↑C↑.

The canonical representation for an unordered tree is defined as the minimum codification, in lexico-

graphical order, of all the ordered trees that can be derived from it.

In the previous example, we would choose the third string as the canonical representation because

it is the minimum depth-first codification in lexicographical order (the symbol ↑ is considered to be

lexicographically greater that any other symbol in the tree labeling alphabet). It should be noted that,

even though we have used a depth-first codification in our example, we could have used any of the other

codification schemes we have described above.

2.2.3. Partially-ordered tree representation

Partially-ordered trees also have different representations depending on the order of their sibling nodes.

As in unordered trees, their canonical representation is the minimum codification, in lexicographical

order, of all the ordered trees that can be derived from their depth-first representation strings.

The possible codifications for the tree in Fig. 1 (c) are:

– ACC↑A↑↑B↑

– AB↑CC↑A↑↑

The canonical representation for this tree is the second one because it is the minimal codification.
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Fig. 3. Two free trees: a centered tree (top) and a bicentered tree (bottom).

2.2.4. Free tree representation

Free trees have no predefined root, but it is possible to select one node as the root in order to get a
unique canonical representation of the tree, as described in [8,11].
The procedure consists of repeatedly removing leaf nodes (with their incident edges) from the free

tree until a single vertex or two adjacent vertices remain. If there is a single remaining node, the tree
is centered. If there are two remaining nodes, then the tree is said to be bicentered. Figure 3 shows
examples of both kinds of trees.
When the tree is centered, the center node is uniquely identified as the root node to obtain a rooted

unordered tree whose canonical representation can be obtained as we explained above.
When the tree is bicentered, two rooted unordered trees can be obtained from the free tree, one from

each bicenter node. The rooted unordered tree with a smaller canonical representation is then selected
as the canonical representation of the free tree.

2.3. Tree patterns

A subtree could be formally defined just as a subgraph of a tree. However, different kinds of subtrees
can result depending on the way the relationships between the nodes within a tree are preserved:

– Bottom-up subtrees: A bottom-up subtree T ′ of T (with root v) can be obtained by taking one
vertex v from T with all of its descendants and corresponding edges, and preserving the order
between siblings if it exists. Formally, in a rooted tree T with vertex set V and edge set E, we say
that a tree T ′ with vertex set V ′ and edge set E′ is a bottom-up subtree of T if and only if:

1. V ′ ⊆ V

2. E′ ⊆ E

3. The labeling of V ′ and E′ in T is preserved in T ′.
4. The order among siblings, when it exists in T , is preserved in T ′.
5. For every vertex v ∈ V , if v ∈ V ′ then all descendants of v ∈ T are also in V ′.

– Induced subtrees: We can obtain an induced subtree T ′ from a tree T by repeatedly removing leaf
nodes from a bottom-up subtree of T .
We can define induced subtrees as bottom-up subtrees without the last fifth constraint above. For
any vertex v ∈ V , when v ∈ V ′, there is no need for all of its descendants to be also in V ′. However,
if v is the parent of w in T and both of them are present in T ′, then v must also be the parent of w

in T ′, since E′ ⊆ E.
In a rooted tree T with vertex set V and edge setE, we say that a tree T ′ with vertex set V ′ and edge
set E′ is an induced subtree of T if and only if:
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Fig. 4. Different kinds of subtrees (from left to right): (a) original tree, (b) bottom-up subtree, (c) induced subtree, (d) embedded
subtree.

1. V ′ ⊆ V

2. E′ ⊆ E

3. The labeling of V ′ and E′ in T is preserved in T ′.
4. The order among siblings, when it exists in T , is preserved in T ′.

– Embedded subtrees: An embedded subtree cannot break the ancestor relationships among the
vertices of T .

In a rooted tree T with vertex set V and edge setE, we say that a tree T ′ with vertex set V ′ and edge
set E′ is an embedded subtree of T if and only if:

1. V ′ ⊆ V

2. The labeling of V ′ and E′ in T is preserved in T ′.

3. If (v1, v2) ∈ E′ then v1 is an ancestor of v2 in T .

4. For all v1, v2 ∈ V ′: v1 < v2 in T ′ if and only if v1 < v2 in T .

– Incorporated subtrees: The ancestor-descendant relationships in the original tree do not have to

hold in its incorporated subtrees [6]. Incorporated subtrees still preserve the order relationship
within the sets of siblings.

In a rooted tree T with vertex set V and edge setE, we say that a tree T ′ with vertex set V ′ and edge

set E′ is an incorporated subtree of T if and only if:

1. V ′ ⊆ V

2. The labeling of V ′ and E′ in T is preserved in T ′.
3. If v1 is an ancestor of v2 in T ′ then v1 is an ancestor of v2 in T .

4. For all v1, v2 ∈ V ′: v1 < v2 in T ′ implies that v1 < v2 in T .

It should be noted that, when v1 is an ancestor of v2 in T , v1 and v2 might end up as siblings or

cousins in the incorporated subtree T ′.
– Subsumed subtrees: Subsumption, which was introduced in [30], is even laxer than incorporation.

The ancestor-descendant relationships in the original tree do not have to hold in its subsumed

subtrees, as happened with incorporated subtrees. In addition, subsumed trees do not preserve the
order relationship among the nodes in the original tree.

In a rooted tree T with vertex set V and edge setE, we say that a tree T ′ with vertex set V ′ and edge

set E′ is a subsumed subtree of T if and only if:

1. V ′ ⊆ V

2. The labeling of V ′ and E′ in T is preserved in T ′.
3. If v1 is an ancestor of v2 in T ′ then v1 is an ancestor of v2 in T .

As above, when v1 is an ancestor of v2 in T , v1 and v2 might also end up as siblings or cousins in the
subsumed subtree T ′. It should also be noted that tree subsumption is based on Prolog subsumption.
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Fig. 5. Inclusion relationships among tree patterns.

This means that the mapping of pattern nodes to data nodes is not required to be injective (i.e., the

same data node might appear several times in the subsumed pattern).

As shown in Fig. 5, bottom-up tree inclusion is more restrictive than induced tree inclusion. Induced

tree inclusion, in turn, is more restrictive than tree embedding. Therefore, all induced subtrees are also

embedded subtrees. Likewise, tree embedding is more restrictive than tree incorporation. Finally, tree

incorporation is more restrictive than tree subsumption, which defines the weakest inclusion relationship

between trees.

Formally, we can assert that, for all trees T , T ′: T ′ is a bottom-up subtree of T ⇒ T ′ is an induced

subtree of T ⇒ T ′ is an embedded subtree of T ⇒ T ′ is an incorporated subtree of T ⇒ T ′ is a subsumed

subtree of T .

Figure 4 shows some examples of the different kinds of subtrees that could be identified in the tree

shown as Fig. 4 (a). If we start from that original tree, we can identify the bottom-up subtree shown in

(b) by taking the rightmost node C and all its descendant. The induced subtree in (c) can be obtained
by taking the root node A with all its descendants and repeatedly removing some leaves. Finally, the

embedded subtree shown in (d) can also be derived from the original tree by removing some leaves

and two of the nodes in the intermediate level of the tree, yet still preserving the ancestor-descendant

relationship between the nodes in the original tree.

It is important to note that we can consider the (d) subtree to be present in the (a) tree in at least three
different ways depending on how we match the subtree nodes to the original tree. For example, the B

node in the embedded subtree can be matched to any of the leaves in (a) with the label B.
Figure 6 shows examples of incorporation and subsumption. Please note that all the subtrees shown

in the second row of Fig. 6 are present in both trees of the example dataset. Since incorporated and

subsumed subtrees generalize embedded subtrees, mining these kinds of subtrees typically leads to a

huge number of identified patterns, which can be unmanageable in practice. Hence, they have been used

only in marginal applications [6].
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Fig. 6. Examples of incorporated and subsumed subtrees that appear in both trees of the database [7].

3. Tree pattern mining

Once we have introduced some basic terminology and notation, we can proceed to analyze the

algorithms that have been proposed for tree pattern mining.

The goal of frequent tree mining is the discovery of all the frequent subtrees in an unique large tree T ,

or in a large database of trees D, also referred to as forest.

Let δT (S) be the occurrence count of a subtree S in a tree T and dT a variable such that dT (S) = 0 if

δT (S) = 0 and dT (S) = 1 if δT (S) > 0. We define the support of a subtree as σ(S) =
∑

T∈D
dT (S),

i.e, the number of trees in D that include at least one occurrence of the subtree S. Analogously, the

weighted support of a subtree is defined as σw(S) =
∑

T∈D
δT (S), i.e., the total number of occurrences

of S within all the trees in D.

We say that a subtree S is frequent if its support is greater than or equal to a predefined minimum

support threshold. We define Fk as the set of all frequent subtrees of size k.

A frequent tree T is maximal (also called maximal agreement subtree [41]) if T is not a subtree of

another frequent tree in D, while T is closed if it is not a subtree of another frequent tree with exactly

the same support in D.

3.1. Pattern mining strategies

Many frequent tree pattern mining algorithms have been proposed in the literature. These algorithms

are usually derived from one of the following two frequent pattern mining algorithms: Apriori [3] or

FP-Growth [14]. These well-known algorithms are commonly used to identify frequent patterns in

transactional databases and they have been extended to mine frequent substructures in tree databases.

Most tree pattern mining algorithms follow the Apriori iterative pattern mining strategy [3], where

each iteration is broken up into two distinct phases:

– Candidate Generation: Potentially frequent subtree candidates are generated from the frequent

patterns discovered in the previous iteration. Most Apriori-like algorithms generate candidates of

size k + 1 by merging two trees of size k having k − 1 elements in common.
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Fig. 7. Candidates generated by the rightmost expansion method when the label alphabet is {A,B}.

– Support Counting: Given the set of potentially frequent candidates, this phase consist of determining

their actual support in D and keeping only those candidates that are actually frequent (a subset of

the candidates generated in the previous phase).

Other algorithms follow the FP-Growth [14] pattern growth approach and they do not explicitly

generate candidates. For instance, the PathJoin algorithm [35] uses compacted structures called FP-

Trees to encode input data, while Chopper and XSpanner [34] use a sequential codification for trees and

they extract frequent subtrees by discovering frequent subsequences.

Sincemost algorithms follow theApriori approach, wewill first review several strategies that have been

proposed for candidate subtree generation and support counting. Later, we delve into the implementation

details of particular tree mining algorithms.

3.2. Candidate generation

The first step in all Apriori-based pattern mining algorithms consists of generating a set of potentially

frequent patterns. This set of candidate patterns is complete if it is a superset of the actual frequent

pattern set. Several candidate generation strategies have been proposed for trees and all of the strategies

we discuss in this paper are complete. They are also valid for all kinds of trees since they rely on the

canonical tree representation schemes discussed in Section 2.2.

We describe some candidate generation strategies in the following paragraphs:

– Rightmost expansion

The rightmost expansion strategy generates subtrees of size k+ 1 from frequent subtrees of size k

by adding nodes only to the rightmost branch of the tree.

Figure 7 illustrates candidate generation using rightmost expansion. It should be noted that, even

though this candidate generation technique generates all potentially frequent patterns, it can also

generate some duplicate patterns. For example, patterns t3 and t4 in Fig. 7 correspond to the same
tree. Likewise, t1 and t2 also represent the same pattern.
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Fig. 8. Two examples of trees with (left) and without (right) a prefix node.

The rightmost expansion candidate generation technique was used by some of the earlier tree mining

algorithms, such as FreqT [1]. A specialization of this technique for candidate generation, which

avoids the generation of duplicate candidates, is known as Tree-Model-Guided (TMG) candidate

enumeration [13,26–28].

The TMG enumeration method uses embedded lists to represent the database trees. These lists

contain, for each node of the tree, its descendants in a preorder enumeration. TMG enumeration

uses references to the embedded lists of the trees in which a pattern appears, called occurrence

coordinates, in order to represent each occurrence of the pattern in a tree. TGM uses the embedded

lists and the occurrence coordinates to extend a candidate subtree by adding one node at the time

starting from the last node of its rightmost path up to its root [27].

Another variant of the rightmost expansion technique using depth-sequence-based codification

scheme was proposed in [4].

– Rightmost expansion with depth sequences

This method was designed to identify patterns in unordered trees. It generates candidates that are

always in canonical form to avoid the generation of duplicate candidates.

As we explained in the previous section, when we use a depth sequence-based-codification a tree is

represented with a sequence of pairs. When a new pair (d, l) is appended to the end of a canonical
depth sequence, we are in fact connecting a new node to the rightmost path of the tree. It can be

shown that the prefix of a canonical depth sequence is also a canonical depth sequence [4]. Therefore,

if we only allow extensions to the canonical depth sequences representing frequent patterns that also

lead to canonical depth sequences, we can avoid the generation of duplicate candidates.

The depth sequence of a tree node is defined as the segment of the canonical sequence that matches

with the bottom-up subtree rooted at the node. We say that a node is a prefix node when it is in

the rightmost path of the tree and its depth sequence is a prefix of his left sibling’s depth sequence.

The prefix node in the lowest level of the tree is called the lowest prefix node (not all trees have a

lowest prefix node). When the tree has a lowest prefix node, the next prefix node is the descendant of

the lowest prefix node’s left sibling that appears in the (i + 1)-th position of the left sibling’s depth
sequence, being i the length of the depth sequence of the lowest prefix node.

As shown in [8] based on the demonstration by [4], a pair (d, l) can be concatenated to the end of a
canonical depth sequence S if and only if:

∗ d 6 d′ or (d=d′ and l > l′) where (d′, l′) corresponds to the next prefix node when the tree has a
lowest prefix node, and

∗ l > l′ if the rightmost path has a node at depth d with label l′.
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Fig. 9. Valid and invalid equivalence class-based extensions.

Figure 8 (a) shows a tree with two prefix nodes. The node number 9 is a prefix node because
the bottom-up subtree rooted at this node has the codification (2,A), which is a prefix of its left
sibling’s codification (node 7), i.e., (2,A) (3,B). The second prefix node in this tree is node 6, whose
bottom-up subtree is (1,B) (2,A) (3,B) (2,A), which is a prefix of the bottom-up subtree rooted at its
left sibling (node 1): (1,B) (2,A) (3,B) (2,A) (2,A). Node 6 is the lowest prefix node because it is at
a lower level than node 9 in the tree, while node 5 is the next prefix node. Unlike the tree in Fig. 8
(a), the tree shown in Fig. 8 (b) does not have a lowest prefix node.
The rightmost expansion candidate generation technique based on depth sequences has been used
by Unot [4], uFreqt [21], Gaston [22], and TRIPS [29].

– Equivalence class-based extension

The equivalence class-based extension technique is based on the depth-first canonical representation
of trees and it was proposed by Zaki in [40].
Two trees of size k are in the same equivalence class if they share a (k− 1)-prefix in their depth-first
canonical codification. Zaki’s candidate generation strategy generates a candidate (k + 1)-subtree
by joining two frequent k-subtrees with (k− 1) nodes in common provided that they are in the same
equivalence class.
Let us consider the equivalence class whose prefix is ABA ↑↑ C. Figure 9 shows which extensions
lead to elements belonging to this class and which ones do not. Adding a child node to node 0 (ABA
↑↑ C ↑ X) or node 3 (ABA ↑↑ C X) will lead to trees that belong to this equivalence class, while
adding a child to node 1 (ABA ↑ X ↑↑ C) or node 2 (ABA X ↑↑↑ C) would lead to trees that do not
belong to this class because they would not share the class prefix.
Thismethod avoids the generation of duplicates candidates. Zaki used this candidate generation tech-
nique in his TreeMiner [38] and SLEUTH [37] algorithms. Its derivatives, such as POTMiner [16],
RETRO [7], or Phylominer [41], also employ this class-based extension method.

– Right-and-left tree join

The right-and-left tree join method was proposed in conjunction with the AMIOT algorithm [15]. In
its candidate generation phase, this algorithm takes the rightmost and leftmost leaves of two trees of
size k sharing the rest of their nodes in order to generate a candidate of size k + 1. Even though the
naive implementation of this candidate generation strategy might easily lead to duplicate patterns,
AMIOT interleaves its operations so that no duplicates are generated.
Figure 10 shows the right-and-left tree join of a left tree L and a right tree R that only differ in one
node: the leftmost leaf in L and the rightmost leaf in R. This join operation leads to a new tree that
has the all nodes L and R share plus the two leaves that they do not have in common.
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Fig. 10. Right and left tree join.

Fig. 11. Extension and join candidate generation [11]: Union of two sibling trees (top) and extension of the ABE ↑↑ C tree
with a new node F (bottom).

– Extension and join

The extension and join technique is based on the breadth-first codification of trees and it defines

two operations to generate candidates: an extension mechanism to increase the tree depth and a

join operation that expands the tree ‘width’ by joining two trees of size k that share k − 1 nodes to
generate a new candidate of size k + 1.
Figure 11 shows an example of the two operations required by the extension and join candidate
generation procedure. It should be noted that the extension mechanism is needed because the join

operation always produces trees that have the same height as their parents.
This candidate generation method is used by HybridTreeMiner [11].

3.3. Support counting

Once we have generated the candidates it is necessary to check if they are actually frequent.

Testing whether a given pattern is a subtree of a tree in the database is one of the most time-consuming
operations in tree pattern mining algorithms. Therefore, it comes as no surprise that several techniques

have been devised to make this test as efficient as possible.
Many of the different proposals that can be found in the literature just use occurrence lists to represent

the trees, following the approach already proposed by AprioriTID in 1994 [3]. These ancillary lists

represent all the occurrences of each pattern X in the database (i.e. the tree database in vertical format)
and they are designed so that you it is not necessary to perform tests on trees once these lists have been

built. This occurrences are usually represented by the mapping between the pattern and the tree, i.e., the
positions of the nodes in the database tree that match those of the pattern.
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Fig. 12. Two trees (t1 and t2) and a pattern that is embedded in both trees.

Figure 12 shows two trees and a pattern that is a embedded subtree of both trees. The mappings of the

pattern to the trees t1 and t2 are (0,2,5) and (0,1,3), respectively.
Some of the different kinds of occurrence lists that have been proposed in the literature are the

following:

– Standard occurrence lists [11] preserve the identifiers of the trees as well as the matching between

the pattern nodes and the database tree nodes using a breadth-first codification scheme. Each element

of the occurrence list for pattern X has the form (tid, i1 . . . ik), where tid is the tree identifier and

i1 . . . ik represent the mapping between the nodes in the pattern X and those in the database tree.

– Rightmost occurrence lists [1] only need to store the rightmost occurrence of X in each database

tree, since rightmost expansion techniques do not have to take into account other occurrences of

the pattern in the tree database (let us remember that these candidate generation strategies only had

to append new nodes to the rightmost branch of a tree). Rightmost occurrence lists, also known

as RMO-lists, are stored with each candidate and contain (tid, n) pairs, where n is the position of

each tree node in the database tree tid that matches with the rightmost leaf of the candidate pattern.

These lists are only useful for mining induced subtrees since they only preserve one node for each

occurrence representing the whole subtree. Update operations can be performed on these lists as in

AprioriTID [3] so that the RMO-list of a new k-pattern can be obtained from the RMO-lists of the
k − 1 patterns it is generated from.

– Scope-lists [38]: The previous occurrence lists can be used regardless of the candidate generation

method used. However, scope-list are typically used with the equivalence class-based candidate

generation technique because they are specially designed for it. These lists are composed of triplets

(tid,m, s), where tid is the tree identifier, m is the mapping of the k − 1 prefix of the pattern X to

the database tree, and s is the scope of the last node in X. The scope of a node n delimits the subtree

rooted at n. Formally, the scope of a node is a pair [a, b] where a is the position of the node in the

depth-first enumeration of the tree and b is the depth-first position of its rightmost descendant.

– Vertical occurrence lists [13,28] group the occurrence coordinates of each subtree, as employed by

the Tree Model Guide candidate generation method [27], which is a specialization of the rightmost

extension technique we described in Section 3.2.

Occurrence lists are usually sufficient for the efficient implementation of the support counting phase of

Apriori-based tree pattern mining algorithms. However, other algorithms have resorted to more complex

data structures. uFreqt [21] uses bipartite graphs to deal with the isomorphisms that might appear when

working with unordered trees. Algorithms that follow the FP-Growth approach and those algorithms
that have been devised for mining closed and maximal tree patterns also use special data structures, such

as the FST-Forest structures employed by PathJoin [35].

This section has surveyed the main strategies used by the existing tree pattern mining algorithms. Tree

pattern mining algorithms usually derive from Apriori [3] or FP-Growth [14]. Apriori-based algorithms
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Table 1
Frequent tree mining algorithms

Input trees Identified patterns

Algorithm Ordered Partially Unordered Free Induced Embedded Incorporated Maximal
trees -ordered trees trees subtrees subtrees /Subsumed /Closed

FreqT [1] • •
AMIOT [15] • •
uFreqT [21] • •
HybridTreeMiner [11] • • •
Unot [4] • •
FreeTreeMiner [10] • • •
FreeTreeMiner’ [25] • • •
GASTON [22] • • •
X3Miner [26] • •
MB3Miner [27] • •
IMB3Miner [28] • •
TreeMiner [38] • •
TreeMinerD [38] • •
RETRO [7] • • • •
Chopper [34] • •
XSpanner [34] • •
Uni3 [13] • •
Phylominer [41] • •
SLEUTH [37] • •
POTMiner [16] • • • • •
TRIPS [29] • • • •
TIDES [29] • • • •
CMTreeMiner [9] • • • •
PathJoin [35] • • •
DRYADE [31] • • •
TreeFinder [30] • • •

proceed in two phases: candidate generation and support counting. Several strategies have been proposed
for the candidate generation phase: the rightmost extension strategy ensures that all the candidates are
generated but it can also generate some duplicates, while the equivalence class-based extension, the
right-and-left tree join, and the extension and join methods avoid the generation of duplicate patterns.
Occurrence lists are often employed during the support counting phase to improve the performance
of tree pattern mining algorithms. In particular, rightmost occurrence lists can be used for counting
the occurrences of induced tree patterns, while scope-lists are usually employed in conjunction with
the equivalence class-based candidate generation method to count the support of both induced and
embedded tree patterns.

4. Tree mining algorithms

In the previous section, we have described the main techniques behind most tree pattern mining
algorithms. We now proceed to survey some of the particular frequent tree mining algorithms that have
been proposed in the literature.
Table 1 provides a bird’s-eye view of frequent tree mining algorithms. This table classifies pattern

mining algorithms according to the kinds of input trees they can be applied to (ordered, partially-ordered,
unordered, or free) and the kinds of subtrees they are able to identify within their input trees (induced,
embedded, incorporated, or subsumed). This table also points out which of those algorithms have been
specially devised for discovering closed and/or maximal tree patterns.
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In the following paragraphs we will provide a brief overview of the algorithms collected in Table 1.

For that, we will group these algorithms with respect to the kind of patterns they identify.

4.1. Identifying bottom-up subtrees

There are not many tree mining algorithms specially designed to identify bottom-up subtrees because
they can be represented as strings and sequence indexation techniques can be applied to mine them [24,

33]. Luccio et al. [19], for instance, create a sorted array with the canonical representation of each

database tree and use binary search to determine if a pattern is a bottom-up subtree of the tree.

4.2. Identifying induced subtrees

In this section, we focus our attention on the algorithms that identify induced subtrees and classify
them according to the kinds of trees they can work with.

4.2.1. Induced subtrees in ordered trees
FreqT [1] uses the rightmost expansion strategy to generate candidate trees. In the support counting

phase, it resorts to rightmost occurrence lists (RMO-lists).

AMIOT [15], which stands for Apriori-based Mining of Induced Ordered Trees, is based on the right-
and-left tree join candidate generation strategy. As in FreqT, the support counting phase is performed

with the help of RMO-lists.

AMIOT uses ancillary lists (JL and JR lists) for each candidate to avoid the generation of duplicate

candidates. This strategy has been shown to be more efficient than the rightmost expansion used by

FreqT.

4.2.2. Induced subtrees in unordered trees

The uFreqT [21] algorithm uses depth sequences to represent unordered trees in canonical form and it
performs rightmost expansions to generate candidates.

During the support counting phase for unordered trees, the main problem is to determine all the

possible combinations of the children of a node v in the pattern that can match with the children of a

node w in a database tree. These potential mappings can be efficiently represented by a bipartite graph

G(v,w), for which a bipartite matching can be computed that maps each child of v to a different child
of w.
uFreqT uses an ancillary data structure that stores exactly those mappings that are included in some

solvable bipartite graphG(v,w) for each node v in the rightmost path along with pointers to the database

tree nodes in order to facilitate the support counting phase for unordered patterns.

HybridTreeMiner [11] uses the breadth-first canonical codification of trees and the extension and join

method for candidate generation. Occurrence lists are used for speeding up the support counting phase

and the experiments performed show that HybridTreeMiner is faster than uFreqT.
The Unot [4] algorithm uses depth sequences to canonically represent unordered trees. Rightmost

expansion with depth sequences is used to generate frequent candidates. In order to speed up the support

counting phase, Unot uses occurrence lists that are similar to HybridTreeMiner’s occurrence lists [11].

4.2.3. Induced subtrees in free trees

HybridTreeMiner can also be adapted to work with free trees by using a canonical representation of

such trees and modifying the standard extension-and-join candidate generation method.
HybridTreeMiner’s join procedure does not need to be modified for free trees. However, as we

explained in section 2.2.4, free trees can be centered or bicentered. The extension mechanism must be
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applied only to centered trees in order to generate all the needed candidate patterns, since bicentered

trees do not have to be extended.

FreeTreeMiner [10] is an earlier Apriori-based frequent pattern mining algorithm for free trees.

Candidates of size k+1 are generated by combining pairs of frequent trees of size k sharing k−1 vertices,
using the standard Apriori algorithm. Indexing techniques based on B+ trees and hash tables are used to

speed up the support counting phase on trees. Experiments in [11] also show that HybridTreeMiner is

more efficient than FreeTreeMiner.

Another algorithm, which was also called FreeTreeMiner, was proposed in [25] and is shown as

FreeTreeMiner’ in Table 1. This algorithm generates potentially frequent candidates by extending the

leaves with maximum height in the tree (which are called extension points) and checks the support

of each candidate by scanning the database (and saving the potential extensions in an extension table).

While HybridTreeMiner is a descendant of Apriori, this algorithm is closer to gSpan [36], a graph mining

algorithm.

Finally, an algorithm to extracts induced pattern in free trees using paths of maximal length is proposed

in the same paper that introduces GASTON [22], an efficient graph mining algorithm.

4.3. Identifying embedded subtrees

Once we have described the algorithms that identify induced subtrees, we introduce those algorithms

that help us to identify embedded subtrees.

4.3.1. Embedded subtrees in ordered trees

Zaki’s TreeMiner [38] uses the depth-first codification of trees together with the class-based extension

method to generate candidates. Zaki describes how you can prune the candidate generation phase in

order to avoid the generation of duplicate candidates using his method, as we discussed in section 3.2.

Scope-lists are used by TreeMiner to determine the support of each pattern. These scope-lists can be

built by joining the scope-lists of the subtrees involved in the candidate generation, thus eliminating the

need to access to the tree database once the initial scope-list have been built.

TreeMinerD [38] is a variant of TreeMiner that is more efficient than TreeMiner in case we are

interested in obtaining the patterns support instead of their weighted support (see Section 2).

Chopper [34] is an FP-Growth-based algorithm to identify embedded subtrees in ordered trees that

employs a depth-sequence-based codification. This algorithm has two main phases: first, it applies an

algorithm to mine frequent sequences and then, using these sequences, it determines which sequences

correspond to frequents subtrees in the original database.

XSpanner [34] is a variant of Chopper that integrates Chopper’s two phases in order to improve its

efficiency.

Chopper and XSpanner are reported to be more efficient than TreeMiner. XSpanner and Chopper can

save time and space cost by avoiding false candidate generation, while the performance of XSpanner is

more stable than that of Chopper [34].

Finally, X3Miner [26], MB3-Miner [27] and IMB3-Miner [28] are algorithms that generate candidates

by using the Tree Model Guided (TMG) enumeration, a specialization of the rightmost path extension

method that avoids the generation of duplicate candidates. Vertical occurrence lists are used to aid in

the support counting phase. MB3 variants ensure that only valid candidates are generated, while the join

approach used in TreeMiner can generate many false subtrees, which degrades its performance [28].
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4.3.2. Embedded subtrees in unordered trees

SLEUTH [37] is Zaki’s proposal for mining unordered trees. As in TreeMiner, Zaki resorts to the

depth-first canonical codification for representing unordered trees and scope-lists for the support counting

phase. In order to generate all the candidates, however, it is sometimes necessary to use non-canonical

trees to build a canonical one. Hence, Zaki proposes two alternative techniques to generate candidates:

– Using the class-based extension mechanism, but checking if each subtree is canonical before ex-

tending it with the elements of its equivalence class.

– Using the canonical extension which extends trees with the elements that belong to the same class

and also with those belonging to the subtree classes of size 2 that share the node that is going to be

extended, but only if the result is in canonical form.

Canonical extension generates non-redundant candidates, but many of them may not be frequent. On

the other hand, class-based extension generates redundant candidates, but considers a smaller number

of potential frequent candidate extensions. The experiments in [37] demonstrate that the class-based

extension method is more efficient that the canonical extension.

Phylominer [41] is a special-purpose algorithm devised to identify embedded subtrees in Phylogenetic

trees, which can be defined as rooted leaf-labeled unordered trees where all internal nodes have no labels,

being the fan-out of each internal node (i.e. its number of children) at least 2.

The Uni3 [13] algorithm is yet another variant of IMB3Miner [28] to identify patterns in unordered

trees using the TMG candidate generation technique.

4.3.3. Embedded subtrees in both ordered and unordered trees

TRIPS and TIDES [29] are two algorithms designed to identify embedded subtrees in ordered or

unordered trees. They use embedded lists to generate candidates and an ancillary hash table, dubbed

support structure, to aid in the support counting phase. The difference between these two algorithms

is their canonical representation: TRIPS uses a post-order traversal representation (numbered Prüfer

sequences [12]) while TIDES employs depth sequences.

POTMiner [16] is a variant of the TreeMiner/SLEUTH tandem that can be used to mine induced and

embedded subtrees in ordered, unordered, and partially-ordered trees. As its predecessors, POTMiner

uses Zaki’s class-based extension method to generate candidates and scope-lists during the support

counting phase.

4.4. Identifying incorporated and subsumed subtrees

RETRO [7] is yet another variant of TreeMiner. In this case, this algorithm can be used to identify

incorporated and subsumed subtrees, as well as the more usual induced and embedded tree patterns.

The TreeFinder algorithm [30] uses the Apriori-based candidate generation technique based on

ancestor-descendent relationships in order to discover subsumed subtrees. We will return to this al-

gorithm in the following section.

4.5. Closed and maximal subtrees

This final section deals with those algorithms that identify closed and maximal subtrees. Again, we

can further classify them depending on the kind of subtrees they identify (induced or embedded).
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4.5.1. Closed and maximal induced subtrees

In CMTreeMiner [9], an enumeration DAG (directed acyclic graph) is a lattice-like data structure

that represents all frequent subtrees. Enumeration trees, which are sometimes used for frequent itemset

mining, are just spanning trees of these enumeration DAGs.

An enumeration DAG joins each frequent k-subtree t with the (k − 1)-subtrees that can be extended
to obtain t, as well as with the (k + 1)-subtrees that can be obtained by extending t.

This DAG can then be used to prune the set of frequent patterns and generate only those patterns that

are maximal. Pruning techniques have been devised in CMTreeMiner for improving the efficiency of

closed and maximal subtree mining in ordered and unordered trees.

PathJoin [35] discovers maximal frequent induced subtrees from a database of unordered labeled trees.

It employs a specialized data structure, a Frequent-Subtree Forest or FST-Forest, that is used to represent

frequent trees in a compact form and improve the efficiency of the support counting phase.

4.5.2. Closed and maximal embedded subtrees

As mentioned above, the TreeFinder algorithm [30] uses the plain Apriori-based candidate generation

technique, albeit it applies this technique directly to ancestor-descendent relationships instead of the other

candidate generation strategies we have discussed in this paper. This direct use of ancestor-descendent

relationships lets TreeFinder discover subsumed subtrees (see Section 2).

Once frequent relationships are clustered by their support count, it is very easy to determine whether a

particular candidate is frequent. However, it should be noted that this method is not complete: TreeFinder

is an approximate miner. In the general case, it is only guaranteed to find a subset of the actual frequent

trees.

DRYADE [31], on its hand, searches for closed patterns in tree databases (recall that closed patterns

are not necessarily maximal). Discovering the closed frequent patterns of depth 1 is the basic mechanism

behind DRYADE. Then, they are hooked together in order to build higher-depth closed frequent patterns

in a level-wise fashion. DRYADE reformulates search operations in a propositional language. This way,

DRYADE can benefit from any progress made in the field of closed itemset mining algorithms, since it

just delegates on a standard closed itemset mining algorithm.

DryadeParent is a variant of the original DRYADE algorithm that outperforms CMTreeMiner by

several orders of magnitude on datasets where the frequent patterns have a high branching factor [32].

In this section, we have reviewed the better-known tree mining algorithms that have been proposed

in the literature. We have classified them according to the kind of patterns they can identify and also

according to the kind of trees they can deal with (see Table 1). AMIOT [15] has been shown to be more

efficient than FREQT [1] for induced subtrees in ordered trees, while HybridTreeMiner [11] and Unot [4]

obtain better results for unordered trees. HybridTreeMiner [11] can also used for mining free trees, as

well as both FreeTreeMiners [10,25] and GASTON [22]. Finally, TreeMiner [38] and SLEUTH [37]

are two well-known Apriori-based algorithms for mining embedded subtrees, whereas Chopper and

XSpanner [34] are FP-Growth based algorithms that have been reported to be more efficient for ordered

trees.

5. Conclusions

In this paper, we have studied existing tree mining algorithms. First, we introduced some basic

terminology and definitions. Later, we discussed the usual strategies frequent tree mining algorithms
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Table 2
Main features of the different frequent tree mining algorithms analyzed in this survey

Algorithm Tree representation Candidate generation approach Implementation details

FreqT [1] − Rightmost expansion RMO occurrence lists
AMIOT [15] − Right and left union RMO occurrence lists
uFreqT [21] Depth sequences Rightmost expansion with depth

sequences
Bipartite graphs

HybridTreeMiner [11] Breadth-first codification Union-extension method Occurrence lists
FreeTreeMiner [10] Depth-first codification Apriori itemset generation Indexation techniques
FreeTreeMiner’ [25] Depth-first codification Maximal-depth extension
TreeMiner [38] Depth-first codification Equivalence classes Scope lists
TreeMinerD [38] Depth-first codification Equivalence classes Scope lists for non-weighted

support
RETRO [7] Relational representation Equivalence classes Scope lists
Chopper [34] Depth sequences N/A Frequent subsequences (Pre-

fixSpan [23])
X3Miner [26] Depth-first codification Rightmost expansion – TMG

enumeration
Vertical occurrence lists

MB3Miner [27] Depth-first codification Rightmost expansion – TMG
enumeration

Vertical occurrence lists

IMB3Miner [28] Depth-first codification Rightmost expansion – TMG
enumeration

Vertical occurrence lists

XSpanner [34] Depth sequences N/A Frequent subsequences (Pre-
fixSpan [23])

SLEUTH [37] Depth-first codification Equivalence classes Scope lists
Unot [4] Depth sequences Rightmost expansion with depth

sequences
Occurrence lists

Phylominer [41] Depth-first codification Equivalence classes No labels in internal nodes
Uni3 [13] Depth-first codification Rightmost expansion – TMG

enumeration
Vertical occurrence lists

GASTON [22] Depth sequences Rightmost expansion with depth
sequences

TRIPS [29] Post-order codification Embedding lists Support Structure (hash table)
TIDES [29] Depth sequences Rightmost expansion with depth

sequences
Support Structure (hash table)

POTMiner [16] Depth-first codification Equivalence classes Scope lists
CMTreeMiner [9] Depth-first codification N/A DAG enumeration graph
TreeFinder [30] Relational representation Apriori itemset generation Clustering techniques
PathJoin [35] FST-Forest structure N/A
DRYADE [31] Propositional language − External closed itemset miner

employ in order to create a consistent framework that lets us easily understand the details behind the

implementation of particular frequent tree mining algorithms.

We have classified existing algorithms according to the kind of trees each algorithm is designed to

work with (ordered, unordered, partially-ordered, and free trees) as well as the kind of patterns they are

able to identify (induced, embedded, incorporated, subsumed, closed, and maximal).

Table 2 summarizes the main features of the tree mining algorithms described in this paper: their

underlying tree representation mechanism, their candidate generation strategy (where applicable), and

some relevant implementation details that are needed for their efficient implementation.

Table 2 shows that most tree mining algorithms follow the well-known Apriori approach [3], while

only a few employ the FP-Growth [14] pattern growth strategy. Within the Apriori-based algorithms we

have surveyed, most of them resort to the right-most expansion method or employ Zaki’s class-based

extension technique for candidate generation. Vertical, RMO, or plain occurrence lists are typically used

with the former, while scope-lists are used with the latter in order to speed up the support counting phase.
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